Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications(78)
XB-PERS-1843

Publications By Hollis T. Cline

Results 1 - 50 of 78 results

Page(s): 1 2 Next


Correction: Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors., McKeown CR, Cline HT., Development. August 14, 2020; 147 (15):


NMDARs Translate Sequential Temporal Information into Spatial Maps., Hiramoto M, Cline HT., iScience. June 26, 2020; 23 (6): 101130.                


Morpholino Studies in Xenopus Brain Development., Bestman JE, Cline HT., Methods Mol Biol. January 1, 2020; 2047 377-395.


Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner., Gambrill AC, Faulkner RL, McKeown CR, Cline HT., J Neurophysiol. January 1, 2019; 121 (1): 306-320.


Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors., McKeown CR, Cline HT., Development. January 1, 2019; 146 (20):             


Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH, McClatchy DB, Schiapparelli L, Shen W, Yates JR, Cline HT., Elife. January 1, 2018; 7                     


Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles., Gambrill AC, Faulkner RL, Cline HT., J Neurophysiol. January 1, 2018; 119 (5): 1947-1961.


Excitatory synaptic dysfunction cell-autonomously decreases inhibitory inputs and disrupts structural and functional plasticity., He HY, Shen W, Zheng L, Guo X, Cline HT., Nat Commun. January 1, 2018; 9 (1): 2893.


In Vivo Analysis of the Neurovascular Niche in the Developing Xenopus Brain., Lau M, Li J, Cline HT., eNeuro. July 1, 2017; 4 (4):                           


Reversible developmental stasis in response to nutrient availability in the Xenopus laevis central nervous system., McKeown CR, Thompson CK, Cline HT., J Exp Biol. February 1, 2017; 220 (Pt 3): 358-368.


Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis., Liu HH, Cline HT., J Neurosci. January 1, 2016; 36 (27): 7325-39.


Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits., Truszkowski TL, James EJ, Hasan M, Wishard TJ, Liu Z, Pratt KG, Cline HT, Aizenman CD., Neural Dev. January 1, 2016; 11 (1): 14.          


Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles., Gambrill AC, Faulkner R, Cline HT., J Neurophysiol. January 1, 2016; 116 (5): 2281-2297.


Thyroid Hormone Acts Locally to Increase Neurogenesis, Neuronal Differentiation, and Dendritic Arbor Elaboration in the Tadpole Visual System., Thompson CK, Cline HT., J Neurosci. January 1, 2016; 36 (40): 10356-10375.


Experience-Dependent Bimodal Plasticity of Inhibitory Neurons in Early Development., He HY, Shen W, Hiramoto M, Cline HT., Neuron. January 1, 2016; 90 (6): 1203-1214.


An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system., Bestman JE, Huang LC, Lee-Osbourne J, Cheung P, Cline HT., Dev Biol. December 15, 2015; 408 (2): 269-91.                    


Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells., Muñoz R, Edwards-Faret G, Moreno M, Zuñiga N, Cline H, Larraín J., Dev Biol. December 15, 2015; 408 (2): 229-43.                              


FMRP regulates neurogenesis in vivo in Xenopus laevis tadpoles., Faulkner RL, Wishard TJ, Thompson CK, Liu HH, Cline HT., eNeuro. January 1, 2015; 2 (1): e0055.                


Optic flow instructs retinotopic map formation through a spatial to temporal to spatial transformation of visual information., Hiramoto M, Cline HT., Proc Natl Acad Sci U S A. November 25, 2014; 111 (47): E5105-13.


Acute synthesis of CPEB is required for plasticity of visual avoidance behavior in Xenopus., Shen W, Liu HH, Schiapparelli L, McClatchy D, He HY, Yates JR, Cline HT., Cell Rep. February 27, 2014; 6 (4): 737-47.


Morpholino studies in Xenopus brain development., Bestman JE, Cline HT., Methods Mol Biol. January 1, 2014; 1082 155-71.


In vivo time-lapse imaging of neuronal development in Xenopus., Ruthazer ES, Schohl A, Schwartz N, Tavakoli A, Tremblay M, Cline HT., Cold Spring Harb Protoc. September 1, 2013; 2013 (9): 804-9.


Labeling individual neurons in the brains of live Xenopus tadpoles by electroporation of dyes or DNA., Ruthazer ES, Schohl A, Schwartz N, Tavakoli A, Tremblay M, Cline HT., Cold Spring Harb Protoc. September 1, 2013; 2013 (9): 869-72.


Bulk electroporation of retinal ganglion cells in live Xenopus tadpoles., Ruthazer ES, Schohl A, Schwartz N, Tavakoli A, Tremblay M, Cline HT., Cold Spring Harb Protoc. August 1, 2013; 2013 (8): 771-5.


Dye labeling retinal ganglion cell axons in live Xenopus tadpoles., Ruthazer ES, Schohl A, Schwartz N, Tavakoli A, Tremblay M, Cline HT., Cold Spring Harb Protoc. August 1, 2013; 2013 (8): 768-70.


Neurogenesis is required for behavioral recovery after injury in the visual system of Xenopus laevis., McKeown CR, Sharma P, Sharipov HE, Shen W, Cline HT., J Comp Neurol. July 1, 2013; 521 (10): 2262-78.              


Computer aided alignment and quantitative 4D structural plasticity analysis of neurons., Lee PC, He HY, Lin CY, Ching YT, Cline HT., Neuroinformatics. April 1, 2013; 11 (2): 249-57.


Vision drives correlated activity without patterned spontaneous activity in developing Xenopus retina., Demas JA, Payne H, Cline HT., Dev Neurobiol. April 1, 2012; 72 (4): 537-46.


Xenopus as an experimental system for developmental neuroscience: introduction to a special issue., Cline HT, Kelly D., Dev Neurobiol. April 1, 2012; 72 (4): 463-4.


In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles., Bestman JE, Lee-Osbourne J, Cline HT., J Comp Neurol. February 1, 2012; 520 (2): 401-33.                      


GABA expression and regulation by sensory experience in the developing visual system., Miraucourt LS, Silva JS, Burgos K, Li J, Abe H, Ruthazer ES, Cline HT., PLoS One. January 1, 2012; 7 (1): e29086.            


Inhibition to excitation ratio regulates visual system responses and behavior in vivo., Shen W, McKeown CR, Demas JA, Cline HT., J Neurophysiol. November 1, 2011; 106 (5): 2285-302.


In vivo time-lapse imaging and serial section electron microscopy reveal developmental synaptic rearrangements., Li J, Erisir A, Cline H., Neuron. January 27, 2011; 69 (2): 273-86.


Visual activity regulates neural progenitor cells in developing xenopus CNS through musashi1., Sharma P, Cline HT., Neuron. November 4, 2010; 68 (3): 442-55.


Visual deprivation increases accumulation of dense core vesicles in developing optic tectal synapses in Xenopus laevis., Li J, Cline HT., J Comp Neurol. June 15, 2010; 518 (12): 2365-81.


Membrane targeted horseradish peroxidase as a marker for correlative fluorescence and electron microscopy studies., Li J, Wang Y, Chiu SL, Cline HT., Front Neural Circuits. January 1, 2010; 4 6.              


Convergence of multisensory inputs in Xenopus tadpole tectum., Hiramoto M, Cline HT., Dev Neurobiol. December 1, 2009; 69 (14): 959-71.


Type A GABA-receptor-dependent synaptic transmission sculpts dendritic arbor structure in Xenopus tadpoles in vivo., Shen W, Da Silva JS, He H, Cline HT., J Neurosci. April 15, 2009; 29 (15): 5032-43.


The Relationship between Dendritic Branch Dynamics and CPEB-Labeled RNP Granules Captured in Vivo., Bestman JE, Cline HT., Front Neural Circuits. January 1, 2009; 3 10.                


Cloning and Phylogenetic Analysis of NMDA Receptor Subunits NR1, NR2A and NR2B in Xenopus laevis Tadpoles., Ewald RC, Cline HT., Front Mol Neurosci. January 1, 2009; 2 4.          


Co-expression of Argonaute2 Enhances Short Hairpin RNA-induced RNA Interference in Xenopus CNS Neurons In Vivo., Chen CM, Chiu SL, Shen W, Cline HT., Front Neurosci. January 1, 2009; 3 63.            


The RNA binding protein CPEB regulates dendrite morphogenesis and neuronal circuit assembly in vivo., Bestman JE, Cline HT., Proc Natl Acad Sci U S A. December 23, 2008; 105 (51): 20494-9.        


Homer proteins shape Xenopus optic tectal cell dendritic arbor development in vivo., Van Keuren-Jensen KR, Cline HT., Dev Neurobiol. September 15, 2008; 68 (11): 1315-24.


Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo., Chiu SL, Chen CM, Cline HT., Neuron. June 12, 2008; 58 (5): 708-19.


Rapid activity-dependent delivery of the neurotrophic protein CPG15 to the axon surface of neurons in intact Xenopus tadpoles., Cantallops I, Cline HT., Dev Neurobiol. May 1, 2008; 68 (6): 744-59.


Roles of NR2A and NR2B in the development of dendritic arbor morphology in vivo., Ewald RC, Van Keuren-Jensen KR, Aizenman CD, Cline HT., J Neurosci. January 23, 2008; 28 (4): 850-61.


Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection., Aizenman CD, Cline HT., J Neurophysiol. April 1, 2007; 97 (4): 2949-57.


AMPA receptors regulate experience-dependent dendritic arbor growth in vivo., Haas K, Li J, Cline HT., Proc Natl Acad Sci U S A. August 8, 2006; 103 (32): 12127-31.


Visual experience regulates metabotropic glutamate receptor-mediated plasticity of AMPA receptor synaptic transmission by homer1a induction., Van Keuren-Jensen K, Cline HT., J Neurosci. July 19, 2006; 26 (29): 7575-80.


Depolarizing GABAergic conductances regulate the balance of excitation to inhibition in the developing retinotectal circuit in vivo., Akerman CJ, Cline HT., J Neurosci. May 10, 2006; 26 (19): 5117-30.

Page(s): 1 2 Next

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556