Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications(42)
XB-PERS-1955

Publications By Katsuhiko Mikoshiba

Results 1 - 42 of 42 results

Page(s): 1


Splicing variation of Long-IRBIT determines the target selectivity of IRBIT family proteins., Kawaai K, Ando H, Satoh N, Yamada H, Ogawa N, Hirose M, Mizutani A, Bonneau B, Seki G, Mikoshiba K., Proc Natl Acad Sci U S A. January 1, 2017; 114 (15): 3921-3926.                          


Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase., Tsutsui H, Jinno Y, Tomita A, Niino Y, Yamada Y, Mikoshiba K, Miyawaki A, Okamura Y., J Physiol. September 15, 2013; 591 (18): 4427-37.


Chaperone stress 70 protein (STCH) binds and regulates two acid/base transporters NBCe1-B and NHE1., Bae JS, Koo NY, Namkoong E, Davies AJ, Choi SK, Shin Y, Jin M, Hwang SM, Mikoshiba K, Park K., J Biol Chem. March 1, 2013; 288 (9): 6295-305.


IP3 signaling is required for cilia formation and left-right body axis determination in Xenopus embryos., Hatayama M, Mikoshiba K, Aruga J., Biochem Biophys Res Commun. July 8, 2011; 410 (3): 520-4.      


Role of BMP, FGF, calcium signaling, and Zic proteins in vertebrate neuroectodermal differentiation., Aruga J, Mikoshiba K., Neurochem Res. July 1, 2011; 36 (7): 1286-92.      


Role of IP₃ receptor in development., Mikoshiba K., Cell Calcium. May 1, 2011; 49 (5): 331-40.


Defective membrane expression of the Na(+)-HCO(3)(-) cotransporter NBCe1 is associated with familial migraine., Suzuki M, Van Paesschen W, Stalmans I, Horita S, Yamada H, Bergmans BA, Legius E, Riant F, De Jonghe P, Li Y, Sekine T, Igarashi T, Fujimoto I, Mikoshiba K, Shimadzu M, Shiohara M, Braverman N, Al-Gazali L, Fujita T, Seki G., Proc Natl Acad Sci U S A. September 7, 2010; 107 (36): 15963-8.


Xenopus Zic4: conservation and diversification of expression profiles and protein function among the Xenopus Zic family., Fujimi TJ, Mikoshiba K, Aruga J., Dev Dyn. December 1, 2006; 235 (12): 3379-86.                                


Xenopus Zic4: Conservation and diversification of expression profiles and protein function among the Xenopus Zic family., Fujimi TJ, Mikoshiba K, Aruga J., Dev Dyn. December 1, 2006; 235 (12): spc1.


IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na+/HCO3- cotransporter 1 (pNBC1)., Shirakabe K, Priori G, Yamada H, Ando H, Horita S, Fujita T, Fujimoto I, Mizutani A, Seki G, Mikoshiba K., Proc Natl Acad Sci U S A. June 20, 2006; 103 (25): 9542-7.


Mouse Zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives., Inoue T, Hatayama M, Tohmonda T, Itohara S, Aruga J, Mikoshiba K., Dev Biol. June 1, 2004; 270 (1): 146-62.  


Calcium/calmodulin-dependent protein kinase I in Xenopus laevis., Saneyoshi T, Kume S, Mikoshiba K., Comp Biochem Physiol B Biochem Mol Biol. March 1, 2003; 134 (3): 499-507.  


The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos., Saneyoshi T, Kume S, Amasaki Y, Mikoshiba K., Nature. May 16, 2002; 417 (6886): 295-9.


Xenopus Brachyury regulates mesodermal expression of Zic3, a gene controlling left-right asymmetry., Kitaguchi T, Mizugishi K, Hatayama M, Aruga J, Mikoshiba K., Dev Growth Differ. February 1, 2002; 44 (1): 55-61.        


A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications., Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A., Nat Biotechnol. January 1, 2002; 20 (1): 87-90.


Xenopus Polycomblike 2 (XPcl2) controls anterior to posterior patterning of the neural tissue., Kitaguchi T, Nakata K, Nagai T, Aruga J, Mikoshiba K., Dev Genes Evol. June 1, 2001; 211 (6): 309-14.


Molecular properties of Zic proteins as transcriptional regulators and their relationship to GLI proteins., Mizugishi K, Aruga J, Nakata K, Mikoshiba K., J Biol Chem. January 19, 2001; 276 (3): 2180-8.


Molecular cloning and expression profile of Xenopus calcineurin A subunit(1)., Saneyoshi T, Kume S, Natsume T, Mikoshiba K., Biochim Biophys Acta. December 11, 2000; 1499 (1-2): 164-170.


A novel member of the Xenopus Zic family, Zic5, mediates neural crest development., Nakata K, Koyabu Y, Aruga J, Mikoshiba K., Mech Dev. December 1, 2000; 99 (1-2): 83-91.      


Zic3 is involved in the left-right specification of the Xenopus embryo., Kitaguchi T, Nagai T, Nakata K, Aruga J, Mikoshiba K., Development. November 1, 2000; 127 (22): 4787-95.              


Galphas family G proteins activate IP(3)-Ca(2+) signaling via gbetagamma and transduce ventralizing signals in Xenopus., Kume S, Inoue T, Mikoshiba K., Dev Biol. October 1, 2000; 226 (1): 88-103.              


Desensitization of IP3-induced Ca2+ release by overexpression of a constitutively active Gqalpha protein converts ventral to dorsal fate in Xenopus early embryos., Kume S, Saneyoshi T, Mikoshiba K., Dev Growth Differ. August 1, 2000; 42 (4): 327-35.


Identification of the C-terminal activation domain of the NeuroD-related factor (NDRF)., Konishi Y, Aoki T, Ohkawa N, Matsu-Ura T, Mikoshiba K, Tamura T., Nucleic Acids Res. June 15, 2000; 28 (12): 2406-12.


Zic1 regulates the patterning of vertebral arches in cooperation with Gli3., Aruga J, Mizugishi K, Koseki H, Imai K, Balling R, Noda T, Mikoshiba K., Mech Dev. December 1, 1999; 89 (1-2): 141-50.


Characterization of a novel member of the FGF family, XFGF-20, in Xenopus laevis., Koga C, Adati N, Nakata K, Mikoshiba K, Furuhata Y, Sato S, Tei H, Sakaki Y, Kurokawa T, Shiokawa K, Yokoyama KK., Biochem Biophys Res Commun. August 11, 1999; 261 (3): 756-65.                  


Expression of green fluorescent protein and inositol 1,4,5-triphosphate receptor in Xenopus laevis oocytes., Miyawaki A, Matheson JM, Sayers LG, Muto A, Michikawa T, Furuichi T, Mikoshiba K., Methods Enzymol. January 1, 1999; 302 225-33.


[Role of PI signaling in early development]., Kume S, Mikoshiba K., Tanpakushitsu Kakusan Koso. September 1, 1998; 43 (12 Suppl): 1834-40.


Mammalian BarH homologue is a potential regulator of neural bHLH genes., Saito T, Sawamoto K, Okano H, Anderson DJ, Mikoshiba K., Dev Biol. July 15, 1998; 199 (2): 216-25.


Xenopus Zic family and its role in neural and neural crest development., Nakata K, Nagai T, Aruga J, Mikoshiba K., Mech Dev. July 1, 1998; 75 (1-2): 43-51.            


Activation of inositol 1,4,5-trisphosphate receptors induces transient changes in cell shape of fertilized Xenopus eggs., Muto A, Mikoshiba K., Cell Motil Cytoskeleton. January 1, 1998; 39 (3): 201-8.


Role of inositol 1,4,5-trisphosphate receptor in ventral signaling in Xenopus embryos., Kume S, Muto A, Inoue T, Suga K, Okano H, Mikoshiba K., Science. December 12, 1997; 278 (5345): 1940-3.


Xenopus Zic3, a primary regulator both in neural and neural crest development., Nakata K, Nagai T, Aruga J, Mikoshiba K., Proc Natl Acad Sci U S A. October 28, 1997; 94 (22): 11980-5.            


Developmental expression of the inositol 1,4,5-trisphosphate receptor and localization of inositol 1,4,5-trisphosphate during early embryogenesis in Xenopus laevis., Kume S, Muto A, Okano H, Mikoshiba K., Mech Dev. August 1, 1997; 66 (1-2): 157-68.


Intracellular targeting and homotetramer formation of a truncated inositol 1,4,5-trisphosphate receptor-green fluorescent protein chimera in Xenopus laevis oocytes: evidence for the involvement of the transmembrane spanning domain in endoplasmic reticulum targeting and homotetramer complex formation., Sayers LG, Miyawaki A, Muto A, Takeshita H, Yamamoto A, Michikawa T, Furuichi T, Mikoshiba K., Biochem J. April 1, 1997; 323 ( Pt 1) 273-80.


Developmental expression of the inositol 1,4,5-trisphosphate receptor and structural changes in the endoplasmic reticulum during oogenesis and meiotic maturation of Xenopus laevis., Kume S, Yamamoto A, Inoue T, Muto A, Okano H, Mikoshiba K., Dev Biol. February 15, 1997; 182 (2): 228-39.              


Calcium waves along the cleavage furrows in cleavage-stage Xenopus embryos and its inhibition by heparin., Muto A, Kume S, Inoue T, Okano H, Mikoshiba K., J Cell Biol. October 1, 1996; 135 (1): 181-90.


Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell., Sakakibara S, Imai T, Hamaguchi K, Okabe M, Aruga J, Nakajima K, Yasutomi D, Nagata T, Kurihara Y, Uesugi S, Miyata T, Ogawa M, Mikoshiba K, Okano H., Dev Biol. June 15, 1996; 176 (2): 230-42.


Gq pathway desensitizes chemotactic receptor-induced calcium signaling via inositol trisphosphate receptor down-regulation., Honda Z, Takano T, Hirose N, Suzuki T, Muto A, Kume S, Mikoshiba K, Itoh K, Shimizu T., J Biol Chem. March 3, 1995; 270 (9): 4840-4.


Cloning and expression of a protein kinase C-regulated chloride channel abundantly expressed in rat brain neuronal cells., Kawasaki M, Uchida S, Monkawa T, Miyawaki A, Mikoshiba K, Marumo F, Sasaki S., Neuron. March 1, 1994; 12 (3): 597-604.


Distinctive functional properties of the neuronal BII (class E) calcium channel., Wakamori M, Niidome T, Furutama D, Furuichi T, Mikoshiba K, Fujita Y, Tanaka I, Katayama K, Yatani A, Schwartz A., Recept Channels. January 1, 1994; 2 (4): 303-14.


Structure and function of inositol 1,4,5-trisphosphate receptor., Mikoshiba K, Furuichi T, Miyawaki A, Yoshikawa S, Nakade S, Michikawa T, Nakagawa T, Okano H, Kume S, Muto A., Ann N Y Acad Sci. December 20, 1993; 707 178-97.


The Xenopus IP3 receptor: structure, function, and localization in oocytes and eggs., Kume S, Muto A, Aruga J, Nakagawa T, Michikawa T, Furuichi T, Nakade S, Okano H, Mikoshiba K., Cell. May 7, 1993; 73 (3): 555-70.                  

Page(s): 1