Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications(24)

Publications By Bernd Fritzsch

Results 1 - 24 of 24 results

Page(s): 1

Topologically correct central projections of tetrapod inner ear afferents require Fzd3., Duncan JS, Fritzsch B, Houston DW, Ketchum EM, Kersigo J, Deans MR, Elliott KL., Sci Rep. January 1, 2019; 9 (1): 10298.              

Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties., Gordy C, Straka H, Houston DW, Fritzsch B, Elliott KL., Dev Neurobiol. January 1, 2018; 78 (11): 1064-1080.                  

Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm., Fritzsch B, Pan N, Jahan I, Elliott KL., Cell Tissue Res. April 11, 2017; .

Sonic hedgehog antagonists reduce size and alter patterning of the frog inner ear., Zarei S, Zarei K, Fritzsch B, Elliott KL., Dev Neurobiol. January 1, 2017; 77 (12): 1385-1400.                

A method for detailed movement pattern analysis of tadpole startle response., Zarei K, Elliott KL, Zarei S, Fritzsch B, Buchholz JHJ., J Exp Anal Behav. January 1, 2017; 108 (1): 113-124.

Ear manipulations reveal a critical period for survival and dendritic development at the single-cell level in Mauthner neurons., Elliott KL, Houston DW, DeCook R, Fritzsch B., Dev Neurobiol. December 1, 2015; 75 (12): 1339-51.        

Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs., Elliott KL, Houston DW, Fritzsch B., Sci Rep. September 21, 2015; 5 8338.                

Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context., Jahan I, Pan N, Fritzsch B., Front Cell Neurosci. January 1, 2015; 9 26.  

Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system., Fritzsch B, Jahan I, Pan N, Elliott KL., Cell Tissue Res. January 1, 2015; 359 (1): 295-313.

Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target., Elliott KL, Houston DW, Fritzsch B., PLoS One. January 1, 2013; 8 (2): e55541.          

Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord., Elliott KL, Fritzsch B., Int J Dev Biol. January 1, 2010; 54 (10): 1443-51.          

Cloning and developmental expression of the soxB2 genes, sox14 and sox21, during Xenopus laevis embryogenesis., Cunningham DD, Meng Z, Fritzsch B, Casey ES., Int J Dev Biol. January 1, 2008; 52 (7): 999-1004.    

Neuroanatomical and histochemical evidence for the presence of common lateral line and inner ear efferents and of efferents to the basilar papilla in a frog, Xenopus laevis., Hellmann B, Fritzsch B., Brain Behav Evol. January 1, 1996; 47 (4): 185-94.

Fast axonal diffusion of 3000 molecular weight dextran amines., Fritzsch B., J Neurosci Methods. October 1, 1993; 50 (1): 95-103.

Retinoic acid affects the organization of reticulospinal neurons in developing Xenopus., Manns M, Fritzsch B., Neurosci Lett. May 25, 1992; 139 (2): 253-6.

Sequential double labelling with different fluorescent dyes coupled to dextran amines as a tool to estimate the accuracy of tracer application and of regeneration., Fritzsch B, Sonntag R., J Neurosci Methods. August 1, 1991; 39 (1): 9-17.

The eye in the brain: retinoic acid effects morphogenesis of the eye and pathway selection of axons but not the differentiation of the retina in Xenopus laevis., Manns M, Fritzsch B., Neurosci Lett. June 24, 1991; 127 (2): 150-4.

Development of the amphibian oculomotor complex: evidences for migration of oculomotor motoneurons across the midline., Naujoks-Manteuffel C, Sonntag R, Fritzsch B., Anat Embryol (Berl). January 1, 1991; 183 (6): 545-52.

Oculomotor (N III) motoneurons can innervate the superior oblique muscle of Xenopus after larval trochlear (N IV) nerve surgery., Fritzsch B, Sonntag R., Neurosci Lett. July 3, 1990; 114 (2): 129-34.

Lithium can transform ear placodes of Xenopus into multiple otic vesicles connected by tubes., Gutknecht D, Fritzsch B., Naturwissenschaften. May 1, 1990; 77 (5): 235-7.

Experimental reorganization in the alar plate of the clawed toad, Xenopus laevis. I. Quantitative and qualitative effects of embryonic otocyst extirpation., Fritzsch B., Brain Res Dev Brain Res. January 1, 1990; 51 (1): 113-22.

The development of the amphibian trochlear nucleus. An HRP study., Sonntag R, Fritzsch B., Neurosci Lett. June 15, 1987; 77 (2): 143-8.

The trochlear nerve of amphibians and its relation to proprioceptive fibers: a qualitative and quantitative HRP study., Fritzsch B, Sonntag R., Anat Embryol (Berl). January 1, 1987; 177 (2): 105-14.

Projection patterns of lateral-line afferents in anurans: a comparative HRP study., Fritzsch B, Nikundiwe AM, Will U., J Comp Neurol. November 1, 1984; 229 (3): 451-69.

Page(s): 1