Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications(134)
XB-PERS-3619

Publications By Eric W. Roubos

Results 1 - 50 of 134 results

Page(s): 1 2 3 Next


Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum., Eagleson GW, Selten MM, Roubos EW, Jenks BG., Gen Comp Endocrinol. August 1, 2012; 178 (1): 116-22.            


The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis., Jenks BG, Kuribara M, Kidane AH, Kramer BM, Roubos EW, Scheenen WJ., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.      


Gene expression profiling of pituitary melanotrope cells during their physiological activation., Kuribara M, van Bakel NH, Ramekers D, de Gouw D, Neijts R, Roubos EW, Scheenen WJ, Martens GJ, Jenks BG., J Cell Physiol. January 1, 2012; 227 (1): 288-96.


ERK-regulated double cortin-like kinase (DCLK)-short phosphorylation and nuclear translocation stimulate POMC gene expression in endocrine melanotrope cells., Kuribara M, Jenks BG, Dijkmans TF, de Gouw D, Ouwens DT, Roubos EW, Vreugdenhil E, Scheenen WJ., Endocrinology. June 1, 2011; 152 (6): 2321-9.


Extracellular-signal regulated kinase regulates production of pro-opiomelanocortin in pituitary melanotroph cells., Kuribara M, Kidane AH, Vos GA, de Gouw D, Roubos EW, Scheenen WJ, Jenks BG., J Neuroendocrinol. March 1, 2011; 23 (3): 261-8.


Brain-derived neurotrophic factor stimulates growth of pituitary melanotrope cells in an autocrine way., Kuribara M, Hess MW, Cazorla M, Roubos EW, Scheenen WJ, Jenks BG., Gen Comp Endocrinol. January 1, 2011; 170 (1): 156-61.          


Analysis of the melanotrope cell neuroendocrine interface in two amphibian species, Rana ridibunda and Xenopus laevis: a celebration of 35 years of collaborative research., Jenks BG, Galas L, Kuribara M, Desrues L, Kidane AH, Vaudry H, Scheenen WJ, Roubos EW, Tonon MC., Gen Comp Endocrinol. January 1, 2011; 170 (1): 57-67.


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW, Van Wijk DC, Kozicz T, Scheenen WJ, Jenks BG., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression., Kuribara M, Eijsink VD, Roubos EW, Jenks BG, Scheenen WJ., Gen Comp Endocrinol. November 1, 2010; 169 (2): 123-9.        


Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis., van Wijk DC, Meijer KH, Roubos EW., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.        


A developmental analysis of periodic albinism in the amphibian Xenopus laevis., Eagleson GW, van der Heijden RA, Roubos EW, Jenks BG., Gen Comp Endocrinol. September 1, 2010; 168 (2): 302-6.        


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJ, Kozicz T., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Neurochemistry and plasticity of the median eminence and neural pituitary lobe in relation to background adaptation of Xenopus laevis., van Wijk DC, Roubos EW., Ann N Y Acad Sci. April 1, 2009; 1163 524-7.


Using transgenic animal models in neuroendocrine research: lessons from Xenopus laevis., Scheenen WJ, Jansen EJ, Roubos EW, Martens GJ., Ann N Y Acad Sci. April 1, 2009; 1163 296-307.


Dynamics of glucocorticoid and mineralocorticoid receptors in the Xenopus laevis pituitary pars intermedia., Roubos EW, Kuribara M, Kuipers-Kwant FJ, Coenen TA, Meijer KH, Cruijsen PM, Denver RJ., Ann N Y Acad Sci. April 1, 2009; 1163 292-5.


Differential neuroendocrine expression of multiple brain-derived neurotrophic factor transcripts., Kidane AH, Heinrich G, Dirks RP, de Ruyck BA, Lubsen NH, Roubos EW, Jenks BG., Endocrinology. March 1, 2009; 150 (3): 1361-8.


Pituitary adenylate cyclase-activating polypeptide regulates brain-derived neurotrophic factor exon IV expression through the VPAC1 receptor in the amphibian melanotrope cell., Kidane AH, Roubos EW, Jenks BG., Endocrinology. August 1, 2008; 149 (8): 4177-82.


Intracellular signal transduction by the extracellular calcium-sensing receptor of Xenopus melanotrope cells., van den Hurk MJ, Cruijsen PM, Schoeber JP, Scheenen WJ, Roubos EW, Jenks BG., Gen Comp Endocrinol. June 1, 2008; 157 (2): 156-64.


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW, Lázár G, Calle M, Barendregt HP, Gaszner B, Kozicz T., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


Calcium channel kinetics of melanotrope cells in Xenopus laevis depend on environmental stimulation., Zhang H, Langeslag M, Breukels V, Jenks BG, Roubos EW, Scheenen WJ., Gen Comp Endocrinol. March 1, 2008; 156 (1): 104-12.


Actions of PACAP and VIP on melanotrope cells of Xenopus laevis., Kidane AH, Cruijsen PM, Ortiz-Bazan MA, Vaudry H, Leprince J, Kuijpers-Kwant FJ, Roubos EW, Jenks BG., Peptides. September 1, 2007; 28 (9): 1790-6.


Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis., Kidane AH, van Dooren SH, Roubos EW, Jenks BG., Gen Comp Endocrinol. August 1, 2007; 153 (1-3): 176-81.      


Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis., Jenks BG, Kidane AH, Scheenen WJ, Roubos EW., Neuroendocrinology. January 1, 2007; 85 (3): 177-85.


Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland., Calle M, Jenks BG, Corstens GJ, Veening JG, Barendregt HP, Roubos EW., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.


The effects of disruption of A kinase anchoring protein-protein kinase A association on protein kinase A signalling in neuroendocrine melanotroph cells of Xenopus laevis., Corstens GJ, van Boxtel R, van den Hurk MJ, Roubos EW, Jenks BG., J Neuroendocrinol. July 1, 2006; 18 (7): 477-83.


Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis., Calle M, Kozicz T, van der Linden E, Desfeux A, Veening JG, Barendregt HP, Roubos EW., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.        


Brain-derived neurotrophic factor in the brain of Xenopus laevis may act as a pituitary neurohormone together with mesotocin., Calle M, Wang L, Kuijpers FJ, Cruijsen PM, Arckens L, Roubos EW., J Neuroendocrinol. June 1, 2006; 18 (6): 454-65.


Receptors for neuropeptide Y, gamma-aminobutyric acid and dopamine differentially regulate Ca2+ currents in Xenopus melanotrope cells via the G(i) protein beta/gamma-subunit., Zhang H, Roubos EW, Jenks BG, Scheenen WJ., Gen Comp Endocrinol. January 15, 2006; 145 (2): 140-7.


High-pressure freezing followed by cryosubstitution as a tool for preserving high-quality ultrastructure and immunoreactivity in the Xenopus laevis pituitary gland., Wang L, Humbel BM, Roubos EW., Brain Res Brain Res Protoc. September 1, 2005; 15 (3): 155-63.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M, Corstens GJ, Wang L, Kozicz T, Denver RJ, Barendregt HP, Roubos EW., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Brain-derived neurotrophic factor in the hypothalamo-hypophyseal system of Xenopus laevis., Wang L, Calle M, Roubos EW., Ann N Y Acad Sci. April 1, 2005; 1040 512-4.


Calcium influx through voltage-operated calcium channels is required for proopiomelanocortin protein expression in Xenopus melanotropes., van den Hurk MJ, Scheenen WJ, Roubos EW, Jenks BG., Ann N Y Acad Sci. April 1, 2005; 1040 494-7.


Analysis of Xenopus melanotrope cell size and POMC-gene expression., Corstens GJ, Roubos EW, Jenks BG, Van Erp PE., Ann N Y Acad Sci. April 1, 2005; 1040 269-72.


Opioid peptides, CRF, and urocortin in cerebrospinal fluid-contacting neurons in Xenopus laevis., Calle M, Claassen IE, Veening JG, Kozicz T, Roubos EW, Barendregt HP., Ann N Y Acad Sci. April 1, 2005; 1040 249-52.


Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity., Roubos EW, Scheenen WJ, Jenks BG., Ann N Y Acad Sci. April 1, 2005; 1040 172-83.


In situ hybridization localization of TRH precursor and TRH receptor mRNAs in the brain and pituitary of Xenopus laevis., Galas L, Bidaud I, Bulant M, Jenks BG, Ouwens DT, Jégou S, Ladram A, Roubos EW, Nicolas P, Tonon MC, Vaudry H., Ann N Y Acad Sci. April 1, 2005; 1040 95-105.


The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells., van den Hurk MJ, Jenks BG, Roubos EW, Scheenen WJ., Neurosci Lett. March 29, 2005; 377 (2): 125-9.


Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels., Zhang HY, Langeslag M, Voncken M, Roubos EW, Scheenen WJ., J Neuroendocrinol. January 1, 2005; 17 (1): 1-9.


Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis., Tonosaki Y, Cruijsen PM, Nishiyama K, Yaginuma H, Roubos EW., J Neuroendocrinol. November 1, 2004; 16 (11): 894-905.


Distribution of the mRNAs encoding the thyrotropin-releasing hormone (TRH) precursor and three TRH receptors in the brain and pituitary of Xenopus laevis: effect of background color adaptation on TRH and TRH receptor gene expression., Bidaud I, Galas L, Bulant M, Jenks BG, Ouwens DT, Jégou S, Ladram A, Roubos EW, Tonon MC, Nicolas P, Vaudry H., J Comp Neurol. September 6, 2004; 477 (1): 11-28.                      


Dopamine D2-receptor activation differentially inhibits N- and R-type Ca2+ channels in Xenopus melanotrope cells., Zhang H, Jenks BG, Ciccarelli A, Roubos EW, Scheenen WJ., Neuroendocrinology. January 1, 2004; 80 (6): 368-78.


Differential distribution and regulation of expression of synaptosomal-associated protein of 25 kDa isoforms in the Xenopus pituitary gland and brain., Kolk SM, Groffen AJ, Tuinhof R, Ouwens DT, Cools AR, Jenks BG, Verhage M, Roubos EW., Neuroscience. January 1, 2004; 128 (3): 531-43.


Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha-melanophore-stimulating hormone in melanotrope cells of Xenopus laevis., Wang LC, Meijer HK, Humbel BM, Jenks BG, Roubos EW., J Neuroendocrinol. January 1, 2004; 16 (1): 19-25.


Role of cortical filamentous actin in the melanotrope cell of Xenopus laevis., Corstens GJ, Calle M, Roubos EW, Jenks BG., Gen Comp Endocrinol. November 1, 2003; 134 (2): 95-102.


Expression and characterization of the extracellular Ca(2+)-sensing receptor in melanotrope cells of Xenopus laevis., van den Hurk MJ, Ouwens DT, Scheenen WJ, Limburg V, Gellekink H, Bai M, Roubos EW, Jenks BG., Endocrinology. June 1, 2003; 144 (6): 2524-33.


Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function., Jenks BG, Roubos EW, Scheenen WJ., Gen Comp Endocrinol. May 1, 2003; 131 (3): 209-19.


Electrical membrane activity and intracellular calcium buffering control exocytosis efficiency in Xenopus melanotrope cells., Scheenen WJ, Dernison MM, Lieste JR, Jenks BG, Roubos EW., Neuroendocrinology. March 1, 2003; 77 (3): 153-61.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM, Claassen IE, Westphal NJ, Jansen M, Tuinhof R, Jenks BG, Roubos EW., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Demonstration of postsynaptic receptor plasticity in an amphibian neuroendocrine interface., Jenks BG, Ouwens DT, Coolen MW, Roubos EW, Martens GJ., J Neuroendocrinol. November 1, 2002; 14 (11): 843-5.


Sauvagine regulates Ca2+ oscillations and electrical membrane activity of melanotrope cells of Xenopus laevis., Cornelisse LN, Deumens R, Coenen JJ, Roubos EW, Gielen CC, Ypey DL, Jenks BG, Scheenen WJ., J Neuroendocrinol. October 1, 2002; 14 (10): 778-87.

Page(s): 1 2 3 Next