Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications(36)
XB-PERS-628

Publications By Orson L. Moritz

Results 1 - 20 of 36 results

Page(s): 1 2 Next


Autophagy in Xenopus laevis rod photoreceptors is independently regulated by phototransduction and misfolded RHOP23H., Wen RH, Stanar P, Tam B, Moritz OL., Autophagy. April 12, 2019; 1-20.


Electrophysiological Changes During Early Steps of Retinitis Pigmentosa., Bocchero U, Tam BM, Chiu CN, Torre V, Moritz OL., Invest Ophthalmol Vis Sci. March 1, 2019; 60 (4): 933-943.


Generation and Analysis of Xenopus laevis Models of Retinal Degeneration Using CRISPR/Cas9., Feehan JM, Stanar P, Tam BM, Chiu C, Moritz OL., Methods Mol Biol. January 1, 2019; 1834 193-207.


Opposing effects of valproic acid treatment mediated by histone deacetylase inhibitor activity in four transgenic X. laevis models of retinitis pigmentosa., Vent-Schmidt RY, Wen RH, Zong Z, Chiu CN, May CG, Tam BM, Moritz OL., J Neurosci. August 1, 2017;


Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic X. laevis Models of Retinitis Pigmentosa., Vent-Schmidt RY, Wen RH, Zong Z, Chiu CN, Tam BM, May CG, Moritz OL., J Neurosci. January 25, 2017; 37 (4): 1039-1054.                  


Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9., Feehan JM, Chiu CN, Stanar P, Tam BM, Ahmed SN, Moritz OL., Sci Rep. January 1, 2017; 7 (1): 6920.              


Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function., Jiang L, Tam BM, Ying G, Wu S, Hauswirth WW, Frederick JM, Moritz OL, Baehr W., FASEB J. December 1, 2015; 29 (12): 4866-80.


Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa., Bogéa TH, Wen RH, Moritz OL., Invest Ophthalmol Vis Sci. December 1, 2015; 56 (13): 7947-55.


Preparation of Xenopus laevis retinal cryosections for electron microscopy., Tam BM, Yang LL, Bogėa TH, Ross B, Martens G, Moritz OL., Exp Eye Res. July 1, 2015; 136 86-90.      


Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa., Tam BM, Noorwez SM, Kaushal S, Kono M, Moritz OL., J Neurosci. October 1, 2014; 34 (40): 13336-48.              


Mutant ELOVL4 that causes autosomal dominant stargardt-3 macular dystrophy is misrouted to rod outer segment disks., Agbaga MP, Tam BM, Wong JS, Yang LL, Anderson RE, Moritz OL., Invest Ophthalmol Vis Sci. May 15, 2014; 55 (6): 3669-80.


Xenopus laevis tadpoles can regenerate neural retina lost after physical excision but cannot regenerate photoreceptors lost through targeted ablation., Lee DC, Hamm LM, Moritz OL., Invest Ophthalmol Vis Sci. March 1, 2013; 54 (3): 1859-67.


Generation of transgenic X. laevis models of retinal degeneration., Tam BM, Lai CC, Zong Z, Moritz OL., Methods Mol Biol. January 1, 2013; 935 113-25.


Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration., Lee DC, Vazquez-Chona FR, Ferrell WD, Tam BM, Jones BW, Marc RE, Moritz OL., J Neurosci. February 8, 2012; 32 (6): 2121-8.            


Targeting of mouse guanylate cyclase 1 (Gucy2e) to Xenopus laevis rod outer segments., Karan S, Tam BM, Moritz OL, Baehr W., Vision Res. November 1, 2011; 51 (21-22): 2304-11.


In situ visualization of protein interactions in sensory neurons: glutamic acid-rich proteins (GARPs) play differential roles for photoreceptor outer segment scaffolding., Ritter LM, Khattree N, Tam B, Moritz OL, Schmitz F, Goldberg AF., J Neurosci. August 3, 2011; 31 (31): 11231-43.              


The dependence of retinal degeneration caused by the rhodopsin P23H mutation on light exposure and vitamin a deprivation., Tam BM, Qazalbash A, Lee HC, Moritz OL., Invest Ophthalmol Vis Sci. March 1, 2010; 51 (3): 1327-34.


Fourier domain optical coherence tomography as a noninvasive means for in vivo detection of retinal degeneration in Xenopus laevis tadpoles., Lee DC, Xu J, Sarunic MV, Moritz OL., Invest Ophthalmol Vis Sci. February 1, 2010; 51 (2): 1066-70.


Recent insights into the mechanisms underlying light-dependent retinal degeneration from X. laevis models of retinitis pigmentosa., Moritz OL, Tam BM., Adv Exp Med Biol. January 1, 2010; 664 509-15.


The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration., Tam BM, Moritz OL., J Neurosci. December 2, 2009; 29 (48): 15145-54.

Page(s): 1 2 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.2


Major funding for Xenbase is provided by grant P41 HD064556