Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications(20)
XB-PERS-2806


Dr.  Paris A. Skourides

Position

Assistant Professor

Research Description

The goal of our research group is to understand the cellular and molecular mechanisms involved in generating the three dimensional organization of tissues and the overall process by which the basic body plan of vertebrate embryos is established. During gastrulation cell and tissue movements on a massive scale create great complexity from a very simple starting form, resulting in highly diversified organisms with a precise three dimensional architecture.

Elucidating the mechanisms underlying these movements is important, because genetic mutations and environmental insults during gastrulation can lead to significant developmental deformities. A comprehensive understanding of this process and how it is affected by genetic mutations will help develop diagnostic and therapeutic tools for dealing with human developmental disorders. The study of gastrulation and morphogenetic movements has always demanded cutting edge imaging and the pace of discovery in the field has been set by advances in imaging technologies. The complexity of morphogenetic movements together with our inability to image them in vivo has forced researchers to study each movement isolated from the others. Yet if we are to truly comprehend the way morphogenetic movements give rise to form we need to begin the process of integrating what we know back to the embryo and view gastrulation as a unified process rather than individual components. Our laboratory with the use of nanotechnology and specifically the application of Quantum Dot nanocrystals is developing new imaging methods and technologies which enable the study of morphogenesis at the organismal, cellular and molecular level in vivo. In addition we are exploring the development of new types of nanocrystals and a number of wide ranging applications for Quantum Dots in Biology.

Lab Memberships

Skourides Lab (Principal Investigator/Director)


Contact

Address:
Department of Biological Sciences
University of Cyprus
P.O. Box 20537
Nicosia
2109, Cyprus

Email: skourip@ucy.ac.cy

Web Page: http://www.ucy.ac.cy/~skourip.aspx

Phone:  22892895


Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556