Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (360) GO Terms (5) Nucleotides (229) Proteins (110) Interactants (1667) Wiki
XB--484087

Papers associated with pax6



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Xenopus as a model system for studying pancreatic development and diabetes., Kofent J, Spagnoli FM., Semin Cell Dev Biol. March 1, 2016; 51 106-16.  


Noggin4 is a long-range inhibitor of Wnt8 signalling that regulates head development in Xenopus laevis., Eroshkin FM, Nesterenko AM, Borodulin AV, Martynova NY, Ermakova GV, Gyoeva FK, Orlov EE, Belogurov AA, Lukyanov KA, Bayramov AV, Zaraisky AG., Sci Rep. January 22, 2016; 6 23049.                                                            


The evolution of basal progenitors in the developing non-mammalian brain., Nomura T, Ohtaka-Maruyama C, Yamashita W, Wakamatsu Y, Murakami Y, Calegari F, Suzuki K, Gotoh H, Ono K., Development. January 1, 2016; 143 (1): 66-74.          


Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients., Nakayama T, Fisher M, Fisher M, Nakajima K, Odeleye AO, Zimmerman KB, Fish MB, Yaoita Y, Chojnowski JL, Lauderdale JD, Netland PA, Grainger RM., Dev Biol. December 15, 2015; 408 (2): 328-44.                              


The Expression of TALEN before Fertilization Provides a Rapid Knock-Out Phenotype in Xenopus laevis Founder Embryos., Miyamoto K, Suzuki KT, Suzuki M, Sakane Y, Sakuma T, Herberg S, Simeone A, Simpson D, Jullien J, Yamamoto T, Gurdon JB., PLoS One. November 18, 2015; 10 (11): e0142946.        


Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus., Thélie A, Desiderio S, Hanotel J, Quigley I, Van Driessche B, Rodari A, Borromeo MD, Kricha S, Lahaye F, Croce J, Cerda-Moya G, Ordoño Fernandez J, Bolle B, Lewis KE, Sander M, Pierani A, Schubert M, Johnson JE, Kintner CR, Pieler T, Van Lint C, Henningfeld KA, Bellefroid EJ, Van Campenhout C., Development. October 1, 2015; 142 (19): 3416-28.                                    


The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway., Luehders K, Sasai N, Davaapil H, Kurosawa-Yoshida M, Hiura H, Brah T, Ohnuma S., Development. October 1, 2015; 142 (19): 3351-61.                              


Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus., Néant I, Mellström B, Gonzalez P, Naranjo JR, Moreau M, Leclerc C., Biochim Biophys Acta. September 1, 2015; 1853 (9): 2077-85.  


Xenbase: Core features, data acquisition, and data processing., James-Zorn C, Ponferrada VG, Burns KA, Fortriede JD, Lotay VS, Liu Y, Brad Karpinka J, Karimi K, Zorn AM, Vize PD., Genesis. August 1, 2015; 53 (8): 486-97.          


Developmental role of plk4 in Xenopus laevis and Danio rerio: implications for Seckel Syndrome., Rapchak CE, Patel N, Hudson J, Crawford M., Biochem Cell Biol. August 1, 2015; 93 (4): 396-404.  


Transcriptional regulator PRDM12 is essential for human pain perception., Chen YC, Chen YC, Auer-Grumbach M, Matsukawa S, Zitzelsberger M, Themistocleous AC, Strom TM, Samara C, Moore AW, Cho LT, Young GT, Weiss C, Schabhüttl M, Stucka R, Schmid AB, Parman Y, Graul-Neumann L, Heinritz W, Passarge E, Watson RM, Hertz JM, Moog U, Baumgartner M, Valente EM, Pereira D, Restrepo CM, Katona I, Dusl M, Stendel C, Wieland T, Stafford F, Reimann F, von Au K, Finke C, Willems PJ, Nahorski MS, Shaikh SS, Carvalho OP, Nicholas AK, Karbani G, McAleer MA, Cilio MR, McHugh JC, Murphy SM, Irvine AD, Jensen UB, Windhager R, Weis J, Bergmann C, Rautenstrauss B, Baets J, De Jonghe P, Reilly MM, Kropatsch R, Kurth I, Chrast R, Michiue T, Bennett DL, Woods CG, Senderek J., Nat Genet. July 1, 2015; 47 (7): 803-8.          


cnrip1 is a regulator of eye and neural development in Xenopus laevis., Zheng X, Suzuki T, Takahashi C, Nishida E, Kusakabe M., Genes Cells. April 1, 2015; 20 (4): 324-39.                          


Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation., Zhang X, Cheong SM, Amado NG, Reis AH, MacDonald BT, Zebisch M, Jones EY, Abreu JG, He X., Dev Cell. March 23, 2015; 32 (6): 719-30.                                  


RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development., Pfirrmann T, Villavicencio-Lorini P, Subudhi AK, Menssen R, Wolf DH, Hollemann T., PLoS One. March 16, 2015; 10 (3): e0120342.                      


Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells., Wong KA, Trembley M, Abd Wahab S, Viczian AS., Biol Open. March 6, 2015; 4 (4): 573-83.                


The requirement of histone modification by PRDM12 and Kdm4a for the development of pre-placodal ectoderm and neural crest in Xenopus., Matsukawa S, Miwata K, Asashima M, Michiue T., Dev Biol. March 1, 2015; 399 (1): 164-176.                    


Patterns of hypothalamic regionalization in amphibians and reptiles: common traits revealed by a genoarchitectonic approach., Domínguez L, González A, Moreno N., Front Neuroanat. February 3, 2015; 9 3.                


Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis., Bandín S, Morona R, González A., Front Neuroanat. February 3, 2015; 9 107.                                                    


COUP-TFs and eye development., Tang K, Tsai SY, Tsai MJ., Biochim Biophys Acta. February 1, 2015; 1849 (2): 201-9.    


Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites., Kim YJ, Bahn M, Kim YH, Shin JY, Cheong SW, Ju BG, Kim WS, Yeo CY., Dev Biol. January 1, 2015; 397 (1): 129-39.                                          


Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development., Zhang S, Li J, Lea R, Vleminckx K, Vleminckx K, Amaya E., Development. December 1, 2014; 141 (24): 4794-805.                            


The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic Hedgehog., Juraver-Geslin HA, Gómez-Skarmeta JL, Durand BC., Dev Biol. December 1, 2014; 396 (1): 107-20.                    


Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character., Fish MB, Nakayama T, Fisher M, Hirsch N, Cox A, Reeder R, Carruthers S, Hall A, Stemple DL, Grainger RM., Dev Biol. November 15, 2014; 395 (2): 317-330.                  


Evolution of the vertebrate Pax4/6 class of genes with focus on its novel member, the Pax10 gene., Feiner N, Meyer A, Kuraku S., Genome Biol Evol. June 19, 2014; 6 (7): 1635-51.              


Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity., Chen WC, Pauls S, Bacha J, Elgar G, Loose M, Shimeld SM., Dev Biol. June 15, 2014; 390 (2): 261-72.          


The retinal pigment epithelium: an important player of retinal disorders and regeneration., Chiba C., Exp Eye Res. June 1, 2014; 123 107-14.        


Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis., Bandín S, Morona R, López JM, Moreno N, González A., J Chem Neuroanat. May 1, 2014; 57-58 24-41.


The evolutionary history of vertebrate cranial placodes--I: cell type evolution., Patthey C, Schlosser G, Shimeld SM., Dev Biol. May 1, 2014; 389 (1): 82-97.        


A survey of ancient conserved non-coding elements in the PAX6 locus reveals a landscape of interdigitated cis-regulatory archipelagos., Bhatia S, Monahan J, Ravi V, Gautier P, Murdoch E, Brenner S, van Heyningen V, Venkatesh B, Kleinjan DA., Dev Biol. March 15, 2014; 387 (2): 214-28.


Wiring the retinal circuits activated by light during early development., Bertolesi GE, Hehr CL, McFarlane S., Neural Dev. February 13, 2014; 9 3.              


The ETS transcription factor Etv1 mediates FGF signaling to initiate proneural gene expression during Xenopus laevis retinal development., Willardsen M, Hutcheson DA, Moore KB, Vetter ML., Mech Dev. February 1, 2014; 131 57-67.      


An essential role for LPA signalling in telencephalon development., Geach TJ, Faas L, Devader C, Gonzalez-Cordero A, Tabler JM, Brunsdon H, Isaacs HV, Dale L., Development. February 1, 2014; 141 (4): 940-9.                            


Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling., Niewiadomski P, Kong JH, Ahrends R, Ma Y, Humke EW, Khan S, Teruel MN, Novitch BG, Rohatgi R., Cell Rep. January 16, 2014; 6 (1): 168-81.


Stabilization of speckle-type POZ protein (Spop) by Daz interacting protein 1 (Dzip1) is essential for Gli turnover and the proper output of Hedgehog signaling., Schwend T, Jin Z, Jiang K, Mitchell BJ, Jia J, Yang J., J Biol Chem. November 8, 2013; 288 (45): 32809-32820.                


A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development., Paranjpe SS, Jacobi UG, van Heeringen SJ, Veenstra GJ., BMC Genomics. November 6, 2013; 14 762.              


Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein., Hulstrand AM, Houston DW., Dev Biol. October 15, 2013; 382 (2): 385-99.                              


Gene expression responses for detecting sublethal effects of xenobiotics and whole effluents on a Xenopus laevis embryo assay., San Segundo L, Martini F, Pablos MV., Environ Toxicol Chem. September 1, 2013; 32 (9): 2018-25.


The cytoskeletal protein Zyxin inhibits Shh signaling during the CNS patterning in Xenopus laevis through interaction with the transcription factor Gli1., Martynova NY, Ermolina LV, Ermakova GV, Eroshkin FM, Gyoeva FK, Baturina NS, Zaraisky AG., Dev Biol. August 1, 2013; 380 (1): 37-48.                      


Simple gene transfer technique based on I-SceI meganuclease and cytoplasmic injection in IVF bovine embryos., Bevacqua RJ, Canel NG, Hiriart MI, Sipowicz P, Rozenblum GT, Vitullo A, Radrizzani M, Fernandez Martin R, Salamone DF., Theriogenology. July 15, 2013; 80 (2): 104-13.e1-29.


Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/β-catenin signaling., Aldiri I, Moore KB, Hutcheson DA, Zhang J, Vetter ML., Development. July 1, 2013; 140 (14): 2867-78.                


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W, Hempel A, Metzig M, Tao S, Hollemann T, Kühl M, Kühl SJ., PLoS One. July 1, 2013; 8 (7): e69372.              


Loss of cell-extracellular matrix interaction triggers retinal regeneration accompanied by Rax and Pax6 activation., Nabeshima A, Nishibayashi C, Ueda Y, Ogino H, Araki M., Genesis. June 1, 2013; 51 (6): 410-9.            


High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos., Suzuki KT, Isoyama Y, Kashiwagi K, Sakuma T, Ochiai H, Sakamoto N, Furuno N, Kashiwagi A, Yamamoto T., Biol Open. May 15, 2013; 2 (5): 448-52.        


Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene., Nicetto D, Hahn M, Jung J, Schneider TD, Straub T, David R, Schotta G, Rupp RA., PLoS Genet. January 1, 2013; 9 (1): e1003188.                                                                


Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry., Flachsova M, Sindelka R, Kubista M., Sci Rep. January 1, 2013; 3 2278.      


Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development., Xu Y, Xu Y, Xu C, Kato A, Tempel W, Abreu JG, Bian C, Hu Y, Hu D, Zhao B, Cerovina T, Diao J, Wu F, He HH, Cui Q, Clark E, Ma C, Barbara A, Veenstra GJ, Xu G, Kaiser UB, Liu XS, Sugrue SP, He X, Min J, Kato Y, Shi YG., Cell. December 7, 2012; 151 (6): 1200-13.                


Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis., El Yakoubi W, Borday C, Hamdache J, Parain K, Tran HT, Vleminckx K, Vleminckx K, Perron M, Locker M., Stem Cells. December 1, 2012; 30 (12): 2784-95.              


Defining progressive stages in the commitment process leading to embryonic lens formation., Jin H, Fisher M, Grainger RM., Genesis. October 1, 2012; 50 (10): 728-40.              


Microarray-based identification of Pitx3 targets during Xenopus embryogenesis., Hooker L, Smoczer C, KhosrowShahian F, Wolanski M, Crawford MJ., Dev Dyn. September 1, 2012; 241 (9): 1487-505.                          


Transgenic Xenopus laevis with the ef1-α promoter as an experimental tool for amphibian retinal regeneration study., Ueda Y, Mizuno N, Araki M., Genesis. August 1, 2012; 50 (8): 642-50.            

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???