Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (134) GO Terms (8) Nucleotides (127) Proteins (56) Interactants (157) Wiki
XB--923159

Papers associated with ache



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Monoclonal antibody Tor 23 recognizes a determinant of a presynaptic acetylcholinesterase., Kushner PD, Stephenson DT, Sternberg H, Weber R., J Neurochem. June 1, 1987; 48 (6): 1942-53.


The use of mRNA translation in vitro and in ovo followed by crossed immunoelectrophoretic autoradiography to study the biosynthesis of human cholinesterases., Soreq H, Dziegielewska KM, Zevin-Sonkin D, Zakut H., Cell Mol Neurobiol. September 1, 1986; 6 (3): 227-37.


Comparative development of end-plate currents in two muscles of Xenopus laevis., Kullberg R, Owens JL., J Physiol. May 1, 1986; 374 413-27.


A comparative study of the innervation of the choroid plexus in amphibia., Ando K, Tagawa T, Ishikawa K, Takamura H, Yasuzumi F., Experientia. April 15, 1986; 42 (4): 394-8.


Elimination of preexistent acetylcholine receptor clusters induced by the formation of new clusters in the absence of nerve., Peng HB., J Neurosci. February 1, 1986; 6 (2): 581-9.


Formation of the vertebrate neuromuscular junction., Moody-Corbett F., Dev Biol (N Y 1985). January 1, 1986; 2 605-35.


Cellular and secreted forms of acetylcholinesterase in mouse muscle cultures., Rubin LL, Chalfin NA, Adamo A, Klymkowsky MW., J Neurochem. December 1, 1985; 45 (6): 1932-40.


Polymorphism of acetylcholinesterase in discrete regions of the developing human fetal brain., Zakut H, Matzkel A, Schejter E, Avni A, Soreq H., J Neurochem. August 1, 1985; 45 (2): 382-9.


Molecular forms of acetylcholinesterase in Xenopus muscle., Lappin RI, Rubin LL., Dev Biol. August 1, 1985; 110 (2): 269-74.


Development of synaptic currents in immobilized muscle of Xenopus laevis., Kullberg R, Owens JL, Vickers J., J Physiol. July 1, 1985; 364 57-68.


A human acetylcholinesterase gene identified by homology to the Ace region of Drosophila., Soreq H, Zevin-Sonkin D, Avni A, Hall LM, Spierer P., Proc Natl Acad Sci U S A. March 1, 1985; 82 (6): 1827-31.


Innervation pattern of muscles of one-legged Xenopus laevis supplied by motoneurons from both sides of the spinal cord., Denton CJ, Lamb AH, Wilson P, Mark RF., Dev Biol. January 1, 1985; 349 (1-2): 85-94.


Membrane-related specializations associated with acetylcholine receptor aggregates induced by electric fields., Luther PW, Peng HB., J Cell Biol. January 1, 1985; 100 (1): 235-44.


Expression of acetylcholinesterase gene(s) in the human brain: molecular cloning evidence for cross-homologous sequences., Zevin-Sonkin D, Avni A, Zisling R, Koch R, Soreq H., J Physiol (Paris). January 1, 1985; 80 (4): 221-8.


Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction., Anderson MJ, Klier FG, Tanguay KE., J Cell Biol. November 1, 1984; 99 (5): 1769-84.


Lineage segregation and developmental autonomy in expression of functional muscle acetylcholinesterase mRNA in the ascidian embryo., Meedel TH, Whittaker JR., Dev Biol. October 1, 1984; 105 (2): 479-87.


The genesis and differentiation of neurons in a frog parasympathetic ganglion., Heathcote RD, Sargent PB., Dev Biol. September 1, 1984; 105 (1): 102-14.


Structural requirements and species specificity of the inhibition by beta-endorphin of heavy acetylcholinesterase from vertebrate skeletal muscle., Haynes LW, Smith ME, Li CH., Mol Pharmacol. July 1, 1984; 26 (1): 45-50.


Protein synthesis in dorsal and ventral regions of Xenopus laevis embryos in relation to dorsal and ventral differentiation., Smith RC, Knowland J., Dev Biol. June 1, 1984; 103 (2): 355-68.


Two types of miniature endplate potentials in Xenopus nerve-muscle cultures., Kidokoro Y., Neurosci Res. June 1, 1984; 1 (3): 157-70.


Choline acetyltransferase and cholinesterases in the developing Xenopus retina., Ma PM, Grant P., J Neurochem. May 1, 1984; 42 (5): 1328-37.


Participation of calcium and calmodulin in the formation of acetylcholine receptor clusters., Peng HB., J Cell Biol. February 1, 1984; 98 (2): 550-7.


Biochemical and histochemical aspects of acetylcholinesterase development in the larval CNS of Xenopus laevis., Schlesinger C, Meyer W., Cell Mol Biol. January 1, 1984; 30 (1): 5-9.


Acetylcholinesterase activity of Xenopus laevis oocytes., Gundersen CB, Miledi R., Neuroscience. December 1, 1983; 10 (4): 1487-95.


Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers., Anderson MJ, Fambrough DM., J Cell Biol. November 1, 1983; 97 (5 Pt 1): 1396-411.


A rapid increase in acetylcholinesterase mRNA during ascidian embryogenesis as demonstrated by microinjection into Xenopus laevis oocytes., Perry HE, Melton DA., Cell Differ. November 1, 1983; 13 (3): 233-8.


Development of translationally active mRNA for larval muscle acetylcholinesterase during ascidian embryogenesis., Meedel TH, Whittaker JR., Proc Natl Acad Sci U S A. August 1, 1983; 80 (15): 4761-5.


Rapid lateral diffusion of extrajunctional acetylcholine receptors in the developing muscle membrane of Xenopus tadpole., Young SH, Poo MM., J Neurosci. January 1, 1983; 3 (1): 225-31.


Biosynthesis and secretion of catalytically active acetylcholinesterase in Xenopus oocytes microinjected with mRNA from rat brain and from Torpedo electric organ., Soreq H, Parvari R, Silman I., Proc Natl Acad Sci U S A. February 1, 1982; 79 (3): 830-4.


[Ontogenesis of the acetylcholine system in the brain of the South African clawed toad (Xenopus laevis Daudin)]., Schlesinger C., J Hirnforsch. January 1, 1981; 22 (5): 543-53.


Pineal complex of the clawed toad, Xenopus laevis Daud.: structure and function., Korf HW, Liesner R, Meissl H, Kirk A., Cell Tissue Res. January 1, 1981; 216 (1): 113-30.


The activity of cholinesterases during the development of Xenopus laevis., Gindi T, Knowland J., J Embryol Exp Morphol. June 1, 1979; 51 209-15.


The distribution of monoamine oxidase and acetylcholinesterase in the brain of Xenopus laevis tadpoles., Terlou M, Stroband HW., Z Zellforsch Mikrosk Anat. June 28, 1973; 140 (2): 261-75.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3