Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (42) GO Terms (2) Nucleotides (65) Proteins (38) Interactants (48) Wiki
XB--952206

Papers associated with kcnk2



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


State-independent intracellular access of quaternary ammonium blockers to the pore of TREK-1., Rapedius M, Schmidt MR, Sharma C, Stansfeld PJ, Sansom MS, Baukrowitz T, Tucker SJ., Channels (Austin). January 1, 2012; 6 (6): 473-8.      


External Ba2+ block of the two-pore domain potassium channel TREK-1 defines conformational transition in its selectivity filter., Ma XY, Yu JM, Zhang SZ, Liu XY, Wu BH, Wei XL, Yan JQ, Sun HL, Yan HT, Zheng JQ., J Biol Chem. November 18, 2011; 286 (46): 39813-22.


Optical probing of a dynamic membrane interaction that regulates the TREK1 channel., Sandoz G, Bell SC, Isacoff EY., Proc Natl Acad Sci U S A. February 8, 2011; 108 (6): 2605-10.


TREK-1 isoforms generated by alternative translation initiation display different susceptibility to the antidepressant fluoxetine., Eckert M, Egenberger B, Döring F, Wischmeyer E., Neuropharmacology. January 1, 2011; 61 (5-6): 918-23.


Molecular mechanisms underlying membrane-potential-mediated regulation of neuronal K2P2.1 channels., Segal-Hayoun Y, Cohen A, Zilberberg N., Mol Cell Neurosci. January 1, 2010; 43 (1): 117-26.


Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue., Sandoz G, Douguet D, Chatelain F, Lazdunski M, Lesage F., Proc Natl Acad Sci U S A. August 25, 2009; 106 (34): 14628-33.


TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices., Zhou M, Xu G, Xie M, Zhang X, Schools GP, Ma L, Kimelberg HK, Chen H., J Neurosci. July 1, 2009; 29 (26): 8551-64.


Pain-associated signals, acidosis and lysophosphatidic acid, modulate the neuronal K(2P)2.1 channel., Cohen A, Sagron R, Somech E, Segal-Hayoun Y, Zilberberg N., Mol Cell Neurosci. March 1, 2009; 40 (3): 382-9.


A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues., Cohen A, Ben-Abu Y, Hen S, Zilberberg N., J Biol Chem. July 11, 2008; 283 (28): 19448-55.


Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium., Thomas D, Plant LD, Wilkens CM, McCrossan ZA, Goldstein SA., Neuron. June 26, 2008; 58 (6): 859-70.


Differential effects of volatile and intravenous anesthetics on the activity of human TASK-1., Putzke C, Hanley PJ, Schlichthörl G, Preisig-Müller R, Rinné S, Anetseder M, Eckenhoff R, Berkowitz C, Vassiliou T, Wulf H, Eberhart L., Am J Physiol Cell Physiol. October 1, 2007; 293 (4): C1319-26.


AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K(+) channels into open leak channels., Sandoz G, Thümmler S, Duprat F, Feliciangeli S, Vinh J, Escoubas P, Guy N, Lazdunski M, Lesage F., EMBO J. December 13, 2006; 25 (24): 5864-72.


Zinc and mercuric ions distinguish TRESK from the other two-pore-domain K+ channels., Czirják G, Enyedi P., Mol Pharmacol. March 1, 2006; 69 (3): 1024-32.


PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels., Lopes CM, Rohács T, Czirják G, Balla T, Enyedi P, Logothetis DE., J Physiol. April 1, 2005; 564 (Pt 1): 117-29.


A plant Shaker-like K+ channel switches between two distinct gating modes resulting in either inward-rectifying or "leak" current., Dreyer I, Michard E, Lacombe B, Thibaud JB., FEBS Lett. September 14, 2001; 505 (2): 233-9.


KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel., Bockenhauer D, Zilberberg N, Goldstein SA., Nat Neurosci. May 1, 2001; 4 (5): 486-91.


The neuroprotective agent sipatrigine (BW619C89) potently inhibits the human tandem pore-domain K(+) channels TREK-1 and TRAAK., Meadows HJ, Chapman CG, Duckworth DM, Kelsell RE, Murdock PR, Nasir S, Rennie G, Randall AD., Dev Biol. February 16, 2001; 892 (1): 94-101.


TREK-1 is a heat-activated background K(+) channel., Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honoré E., EMBO J. June 1, 2000; 19 (11): 2483-91.


Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel., Meadows HJ, Benham CD, Cairns W, Gloger I, Jennings C, Medhurst AD, Murdock P, Chapman CG., Pflugers Arch. April 1, 2000; 439 (6): 714-22.


A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids., Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M., EMBO J. June 15, 1998; 17 (12): 3297-308.


Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel., Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C, Lazdunski M., EMBO J. December 16, 1996; 15 (24): 6854-62.

???pagination.result.page??? ???pagination.result.prev??? 1 ???pagination.result.next???