Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (89) GO Terms (7) Nucleotides (98) Proteins (55) Interactants (828) Wiki
XB--481991

Papers associated with smad3



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways., Tacheau C, Fontaine J, Loy J, Mauviel A, Verrecchia F., J Cell Physiol. December 1, 2008; 217 (3): 759-68.


Nuclear accumulation of Smad complexes occurs only after the midblastula transition in Xenopus., Saka Y, Hagemann AI, Piepenburg O, Smith JC., Development. December 1, 2007; 134 (23): 4209-18.


Erbin inhibits transforming growth factor beta signaling through a novel Smad-interacting domain., Dai F, Chang C, Lin X, Dai P, Mei L, Feng XH., Mol Cell Biol. September 1, 2007; 27 (17): 6183-94.


The MH1 domain of Smad3 interacts with Pax6 and represses autoregulation of the Pax6 P1 promoter., Grocott T, Frost V, Maillard M, Johansen T, Wheeler GN, Dawes LJ, Wormstone IM, Chantry A., Nucleic Acids Res. January 1, 2007; 35 (3): 890-901.            


Xenopus Dab2 is required for embryonic angiogenesis., Cheong SM, Choi SC, Han JK., BMC Dev Biol. December 19, 2006; 6 63.                  


Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides., Rana AA, Collart C, Gilchrist MJ, Smith JC., PLoS Genet. November 17, 2006; 2 (11): e193.                                    


deltaEF1 and SIP1 are differentially expressed and have overlapping activities during Xenopus embryogenesis., van Grunsven LA, Taelman V, Michiels C, Opdecamp K, Huylebroeck D, Bellefroid EJ., Dev Dyn. June 1, 2006; 235 (6): 1491-500.  


XBP1 forms a regulatory loop with BMP-4 and suppresses mesodermal and neural differentiation in Xenopus embryos., Cao Y, Cao Y, Knöchel S, Oswald F, Donow C, Zhao H, Knöchel W., Mech Dev. January 1, 2006; 123 (1): 84-96.      


The novel Smad-interacting protein Smicl regulates Chordin expression in the Xenopus embryo., Collart C, Verschueren K, Rana A, Smith JC, Huylebroeck D., Development. October 1, 2005; 132 (20): 4575-86.        


Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1., Alliston T, Ko TC, Cao Y, Liang YY, Feng XH, Chang C, Derynck R., J Biol Chem. June 24, 2005; 280 (25): 24227-37.


Transcriptional regulation of the TGF-beta pseudoreceptor BAMBI by TGF-beta signaling., Sekiya T, Oda T, Matsuura K, Akiyama T., Biochem Biophys Res Commun. July 30, 2004; 320 (3): 680-4.


Smad2 and Smad3 coordinately regulate craniofacial and endodermal development., Liu Y, Festing M, Thompson JC, Hester M, Rankin S, Rankin S, El-Hodiri HM, Zorn AM, Weinstein M., Dev Biol. June 15, 2004; 270 (2): 411-26.  


Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells., De Bosscher K, Hill CS, Nicolás FJ., Biochem J. April 1, 2004; 379 (Pt 1): 209-16.


Interaction with Smad4 is indispensable for suppression of BMP signaling by c-Ski., Takeda M, Mizuide M, Oka M, Watabe T, Inoue H, Suzuki H, Fujita T, Imamura T, Miyazono K, Miyazawa K., Mol Biol Cell. March 1, 2004; 15 (3): 963-72.                


[The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation]., Xu XL, Dai KR, Tang TT., Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. September 1, 2003; 17 (5): 359-62.


Evidence for antagonism of BMP-4 signals by MAP kinase during Xenopus axis determination and neural specification., Sater AK, El-Hodiri HM, Goswami M, Alexander TB, Al-Sheikh O, Etkin LD, Akif Uzman J., Differentiation. September 1, 2003; 71 (7): 434-44.                


Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins., Postigo AA, Depp JL, Taylor JJ, Kroll KL., EMBO J. May 15, 2003; 22 (10): 2453-62.


Regulation of the rat follicle-stimulating hormone beta-subunit promoter by activin., Suszko MI, Lo DJ, Suh H, Camper SA, Woodruff TK., Mol Endocrinol. March 1, 2003; 17 (3): 318-32.


Stoichiometry of active smad-transcription factor complexes on DNA., Inman GJ, Hill CS., J Biol Chem. December 27, 2002; 277 (52): 51008-16.


Molecular regulation of vertebrate early endoderm development., Shivdasani RA., Dev Biol. September 15, 2002; 249 (2): 191-203.      


Bone morphogenetic protein-4-induced activation of Xretpos is mediated by Smads and Olf-1/EBF associated zinc finger (OAZ)., Shim S, Bae N, Han JK., Nucleic Acids Res. July 15, 2002; 30 (14): 3107-17.    


Phosphorylation regulation of the interaction between Smad7 and activin type I receptor., Liu X, Nagarajan RP, Vale W, Chen Y., FEBS Lett. May 22, 2002; 519 (1-3): 93-8.


The role of a Williams-Beuren syndrome-associated helix-loop-helix domain-containing transcription factor in activin/nodal signaling., Ring C, Ogata S, Meek L, Song J, Ohta T, Miyazono K, Cho KW., Genes Dev. April 1, 2002; 16 (7): 820-35.    


The anaphase-promoting complex mediates TGF-beta signaling by targeting SnoN for destruction., Wan Y, Liu X, Kirschner MW., Mol Cell. November 1, 2001; 8 (5): 1027-39.


TGF-beta signalling pathways in early Xenopus development., Hill CS., Curr Opin Genet Dev. October 1, 2001; 11 (5): 533-40.    


Xenopus Smad3 is specifically expressed in the chordoneural hinge, notochord and in the endocardium of the developing heart., Howell M, Mohun TJ, Hill CS., Mech Dev. June 1, 2001; 104 (1-2): 147-50.    


Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase., Zhang Y, Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R., Proc Natl Acad Sci U S A. January 30, 2001; 98 (3): 974-9.        


Nodal signaling uses activin and transforming growth factor-beta receptor-regulated Smads., Kumar A, Novoselov V, Celeste AJ, Wolfman NM, ten Dijke P, Kuehn MR., J Biol Chem. January 5, 2001; 276 (1): 656-61.


Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus., Pierreux CE, Nicolás FJ, Hill CS., Mol Cell Biol. December 1, 2000; 20 (23): 9041-54.


Identification and characterization of constitutively active Smad2 mutants: evaluation of formation of Smad complex and subcellular distribution., Funaba M, Mathews LS., Mol Endocrinol. October 1, 2000; 14 (10): 1583-91.


Expression regulation of hyaluronan synthase in corneal endothelial cells., Usui T, Amano S, Oshika T, Suzuki K, Miyata K, Araie M, Heldin P, Yamashita H., Invest Ophthalmol Vis Sci. October 1, 2000; 41 (11): 3261-7.


Structural basis for the functional difference between Smad2 and Smad3 in FAST-2 (forkhead activin signal transducer-2)-mediated transcription., Nagarajan RP, Chen Y., Biochem J. August 15, 2000; 350 Pt 1 253-9.


Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways., Labbé E, Letamendia A, Attisano L., Proc Natl Acad Sci U S A. July 18, 2000; 97 (15): 8358-63.


Repression of transforming-growth-factor-beta-mediated transcription by nuclear factor kappaB., Nagarajan RP, Chen F, Li W, Vig E, Harrington MA, Nakshatri H, Chen Y., Biochem J. June 15, 2000; 348 Pt 3 591-6.


Cloning and characterization of zebrafish smad2, smad3 and smad4., Dick A, Mayr T, Bauer H, Meier A, Hammerschmidt M., Gene. April 4, 2000; 246 (1-2): 69-80.


Smad3 inhibits transforming growth factor-beta and activin signaling by competing with Smad4 for FAST-2 binding., Nagarajan RP, Liu J, Chen Y., J Biol Chem. October 29, 1999; 274 (44): 31229-35.


The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis., Yeo CY, Chen X, Whitman M., J Biol Chem. September 10, 1999; 274 (37): 26584-90.


Can't get no SMADisfaction: Smad proteins as positive and negative regulators of TGF-beta family signals., Christian JL, Nakayama T., Bioessays. May 1, 1999; 21 (5): 382-90.


Drosophila dSmad2 and Atr-I transmit activin/TGFbeta signals., Das P, Inoue H, Baker JC, Beppu H, Kawabata M, Harland RM, Miyazono K, Padgett RW., Genes Cells. February 1, 1999; 4 (2): 123-34.  


Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild-type Smad2 and Smad3., Yagi K, Goto D, Hamamoto T, Takenoshita S, Kato M, Miyazono K., J Biol Chem. January 8, 1999; 274 (2): 703-9.


SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor., Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL., Cell. December 11, 1998; 95 (6): 779-91.


Smad3 mutant mice develop metastatic colorectal cancer., Zhu Y, Richardson JA, Parada LF, Graff JM., Cell. September 18, 1998; 94 (6): 703-14.


Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2., Labbé E, Silvestri C, Hoodless PA, Wrana JL, Attisano L., Mol Cell. July 1, 1998; 2 (1): 109-20.


Identification of receptors and Smad proteins involved in activin signalling in a human epidermal keratinocyte cell line., Shimizu A, Kato M, Nakao A, Imamura T, ten Dijke P, Heldin CH, Kawabata M, Shimada S, Miyazono K., Genes Cells. February 1, 1998; 3 (2): 125-34.


Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling., Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P., Nature. October 9, 1997; 389 (6651): 631-5.


TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4., Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P., EMBO J. September 1, 1997; 16 (17): 5353-62.


The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function., Zhang Y, Musci T, Derynck R., Curr Biol. April 1, 1997; 7 (4): 270-6.


The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in the Xenopus embryo and transcriptional activation., Meersseman G, Verschueren K, Nelles L, Blumenstock C, Kraft H, Wuytens G, Remacle J, Kozak CA, Tylzanowski P, Niehrs C, Huylebroeck D., Mech Dev. January 1, 1997; 61 (1-2): 127-40.    


Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways., Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J., Nature. October 31, 1996; 383 (6603): 832-6.

???pagination.result.page??? ???pagination.result.prev??? 1 2 ???pagination.result.next???