Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (94) GO Terms (6) Nucleotides (106) Proteins (50) Interactants (395) Wiki
XB--482110

Papers associated with pkd2



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity., Tran U, Zakin L, Schweickert A, Agrawal R, Döger R, Blum M, De Robertis EM, Wessely O., Development. April 1, 2010; 137 (7): 1107-16.              


Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease., Li Y, Santoso NG, Yu S, Yu S, Woodward OM, Qian F, Guggino WB., J Biol Chem. December 25, 2009; 284 (52): 36431-36441.


Structural and molecular basis of the assembly of the TRPP2/PKD1 complex., Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong AC, Tong L, Isacoff EY, Yang J., Proc Natl Acad Sci U S A. July 14, 2009; 106 (28): 11558-63.


TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum., Wegierski T, Steffl D, Kopp C, Tauber R, Buchholz B, Nitschke R, Kuehn EW, Walz G, Köttgen M., EMBO J. March 4, 2009; 28 (5): 490-9.


Identification of proSAAS homologs in lower vertebrates: conservation of hydrophobic helices and convertase-inhibiting sequences., Kudo H, Liu J, Jansen EJ, Ozawa A, Panula P, Martens GJ, Lindberg I., Endocrinology. March 1, 2009; 150 (3): 1393-9.


Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants., Sullivan-Brown J, Schottenfeld J, Okabe N, Hostetter CL, Serluca FC, Thiberge SY, Burdine RD., Dev Biol. February 15, 2008; 314 (2): 261-75.


Cilia-driven leftward flow determines laterality in Xenopus., Schweickert A, Weber T, Beyer T, Vick P, Bogusch S, Feistel K, Blum M., Curr Biol. January 9, 2007; 17 (1): 60-6.        


Polycystic kidney disease and receptor for egg jelly is a plasma membrane protein of mouse sperm head., Butscheid Y, Chubanov V, Steger K, Meyer D, Dietrich A, Gudermann T., Mol Reprod Dev. March 1, 2006; 73 (3): 350-60.


ScOPT1 and AtOPT4 function as proton-coupled oligopeptide transporters with broad but distinct substrate specificities., Osawa H, Stacey G, Gassmann W., Biochem J. January 1, 2006; 393 (Pt 1): 267-75.


Inhibition of polycystin-L channel by the Chinese herb Sparganum stoloniferum Buch.-Ham., Li F, Dai XQ, Li Q, Wu Y, Chen XZ., Can J Physiol Pharmacol. January 1, 2006; 84 (8-9): 923-7.


Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling., Li Y, Wright JM, Qian F, Germino GG, Guggino WB., J Biol Chem. December 16, 2005; 280 (50): 41298-306.


Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer's vesicle are required for specification of the zebrafish left-right axis., Bisgrove BW, Snarr BS, Emrazian A, Yost HJ., Dev Biol. November 15, 2005; 287 (2): 274-88.


Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left-right asymmetry., Qiu D, Cheng SM, Wozniak L, McSweeney M, Perrone E, Levin M., Dev Dyn. September 1, 2005; 234 (1): 176-89.      


Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells., Shin JB, Adams D, Paukert M, Siba M, Sidi S, Levin M, Gillespie PG, Gründer S., Proc Natl Acad Sci U S A. August 30, 2005; 102 (35): 12572-7.              


Cloning and expression of the amphibian homologue of the human PKD1 gene., Burtey S, Leclerc C, Nabais E, Munch P, Gohory C, Moreau M, Fontés M., Gene. August 29, 2005; 357 (1): 29-36.          


Expression of the polycystin-1 C-terminal cytoplasmic tail increases Cl channel activity in Xenopus oocytes., Chernova MN, Vandorpe DH, Clark JS, Alper SL., Kidney Int. August 1, 2005; 68 (2): 632-41.


Expression of proopiomelanocortin and its cleavage enzyme genes in Rana esculenta and Xenopus laevis gonads., Carotti M, Nabissi M, Mosconi G, Gangnon F, Lihrmann I, Vaudry H, Polzonetti-Magni AM., Ann N Y Acad Sci. April 1, 2005; 1040 261-3.


A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney., Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N., Development. August 1, 2004; 131 (16): 4085-93.


Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization., Cano DA, Murcia NS, Pazour GJ, Hebrok M., Development. July 1, 2004; 131 (14): 3457-67.


Evolutionary conservation of Drosophila polycystin-2 as a calcium-activated cation channel., Venglarik CJ, Gao Z, Lu X., J Am Soc Nephrol. May 1, 2004; 15 (5): 1168-77.


Left-right asymmetry: nodal points., Mercola M., J Cell Sci. August 15, 2003; 116 (Pt 16): 3251-7.      


Native polycystin 2 functions as a plasma membrane Ca2+-permeable cation channel in renal epithelia., Luo Y, Vassilev PM, Li X, Kawanabe Y, Zhou J., Mol Cell Biol. April 1, 2003; 23 (7): 2600-7.


Polycystin-2 associates with tropomyosin-1, an actin microfilament component., Li Q, Dai Y, Guo L, Liu Y, Hao C, Wu G, Basora N, Michalak M, Chen XZ., J Mol Biol. January 31, 2003; 325 (5): 949-62.


Polycystin-2 interacts with troponin I, an angiogenesis inhibitor., Li Q, Shen PY, Wu G, Chen XZ., Biochemistry. January 21, 2003; 42 (2): 450-7.


Cation channel regulation by COOH-terminal cytoplasmic tail of polycystin-1: mutational and functional analysis., Vandorpe DH, Wilhelm S, Jiang L, Ibraghimov-Beskrovnaya O, Chernova MN, Stuart-Tilley AK, Alper SL., Physiol Genomics. February 28, 2002; 8 (2): 87-98.


Transport function of the naturally occurring pathogenic polycystin-2 mutant, R742X., Chen XZ, Segal Y, Basora N, Guo L, Peng JB, Babakhanlou H, Vassilev PM, Brown EM, Hediger MA, Zhou J., Biochem Biophys Res Commun. April 20, 2001; 282 (5): 1251-6.


Polycystin-2 is a novel cation channel implicated in defective intracellular Ca(2+) homeostasis in polycystic kidney disease., Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye Cp, Brown EM, Hediger MA, Zhou J., Biochem Biophys Res Commun. March 23, 2001; 282 (1): 341-50.


Inhibition of the vacuolar H+-ATPase perturbs the transport, sorting, processing and release of regulated secretory proteins., Schoonderwoert VT, Holthuis JC, Tanaka S, Tooze SA, Martens GJ., Eur J Biochem. September 1, 2000; 267 (17): 5646-54.


Differential onset of expression of mRNAs encoding proopiomelanocortin, prohormone convertases 1 and 2, and granin family members during Xenopus laevis development., Holling TM, van Herp F, Durston AJ, Martens GJ., Brain Res Mol Brain Res. January 10, 2000; 75 (1): 70-5.      


Polycystin-L is a calcium-regulated cation channel permeable to calcium ions., Chen XZ, Vassilev PM, Basora N, Peng JB, Nomura H, Segal Y, Brown EM, Reeders ST, Hediger MA, Zhou J., Nature. September 23, 1999; 401 (6751): 383-6.


Dynamics of proopiomelanocortin and prohormone convertase 2 gene expression in Xenopus melanotrope cells during long-term background adaptation., Dotman CH, van Herp F, Martens GJ, Jenks BG, Roubos EW., J Endocrinol. November 1, 1998; 159 (2): 281-6.


Synthesis and differentially regulated processing of proinsulin in developing chick pancreas, liver and neuroretina., Alarcón C, Serna J, Pérez-Villamil B, de Pablo F., FEBS Lett. October 9, 1998; 436 (3): 361-6.


The propeptide of prohormone convertase PC2 acts as a transferable aggregation and membrane-association signal., Jan G, Taylor NA, Scougall KT, Docherty K, Shennan KI., Eur J Biochem. October 1, 1998; 257 (1): 41-6.


Differences in the autocatalytic cleavage of pro-PC2 and pro-PC3 can be attributed to sequences within the propeptide and Asp310 of pro-PC2., Scougall K, Taylor NA, Jermany JL, Docherty K, Shennan KI., Biochem J. September 15, 1998; 334 ( Pt 3) 531-7.


Manipulation of disulfide bonds differentially affects the intracellular transport, sorting, and processing of neuroendocrine secretory proteins., Van Horssen AM, Van Kuppeveld FJ, Martens GJ., J Neurochem. July 1, 1998; 71 (1): 402-9.


Mapping of the domain in the neuroendocrine protein 7B2 important for its helper function towards prohormone convertase PC2., Van Horssen AM, Martens GJ., Mol Cell Endocrinol. February 1, 1998; 137 (1): 7-12.


Immunocytochemical localization of prohormone convertases PC1 and PC2 in the anuran pituitary gland: subcellular localization in corticotrope and melanotrope cells., Kurabuchi S, Tanaka S., Cell Tissue Res. June 1, 1997; 288 (3): 485-96.


Secretogranin III is a sulfated protein undergoing proteolytic processing in the regulated secretory pathway., Holthuis JC, Jansen EJ, Martens GJ., J Biol Chem. July 26, 1996; 271 (30): 17755-60.


Dissociation of the complex between the neuroendocrine chaperone 7B2 and prohormone convertase PC2 is not associated with proPC2 maturation., Braks JA, Van Horssen AM, Martens GJ., Eur J Biochem. June 1, 1996; 238 (2): 505-10.


Structural organization of the gene encoding the neuroendocrine chaperone 7B2., Braks JA, Broers CA, Danger JM, Martens GJ., Eur J Biochem. February 15, 1996; 236 (1): 60-7.


Processing of pro-islet amyloid polypeptide (proIAPP) by the prohormone convertase PC2., Badman MK, Shennan KI, Jermany JL, Docherty K, Clark A., FEBS Lett. January 15, 1996; 378 (3): 227-31.


The neuroendocrine chaperone 7B2 can enhance in vitro POMC cleavage by prohormone convertase PC2., Braks JA, Martens GJ., FEBS Lett. September 4, 1995; 371 (2): 154-8.


Differences between the catalytic properties of recombinant human PC2 and endogenous rat PC2., Bailyes EM, Shennan KI, Usac EF, Arden SD, Guest PC, Docherty K, Hutton JC., Biochem J. July 15, 1995; 309 ( Pt 2) 587-94.


7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for the expression of enzymatic activity., Zhu X, Lindberg I., J Cell Biol. June 1, 1995; 129 (6): 1641-50.


Frog prohormone convertase PC2 mRNA has a mammalian-like expression pattern in the central nervous system and is colocalized with a subset of thyrotropin-releasing hormone-expressing neurons., Pu LP, Hayes WP, Mill JF, Ghose S, Friedman TC, Loh YP., J Comp Neurol. March 27, 1995; 354 (1): 71-86.


Differences in pH optima and calcium requirements for maturation of the prohormone convertases PC2 and PC3 indicates different intracellular locations for these events., Shennan KI, Taylor NA, Jermany JL, Matthews G, Docherty K., J Biol Chem. January 20, 1995; 270 (3): 1402-7.


7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway., Braks JA, Martens GJ., Cell. July 29, 1994; 78 (2): 263-73.


Calcium- and pH-dependent aggregation and membrane association of the precursor of the prohormone convertase PC2., Shennan KI, Taylor NA, Docherty K., J Biol Chem. July 15, 1994; 269 (28): 18646-50.


Autocatalytic maturation of the prohormone convertase PC2., Matthews G, Shennan KI, Seal AJ, Taylor NA, Colman A, Docherty K., J Biol Chem. January 7, 1994; 269 (1): 588-92.


cDNA structure and in situ localization of the Aplysia californica pro-hormone convertase PC2., Ouimet T, Mammarbachi A, Cloutier T, Seidah NG, Castellucci VF., FEBS Lett. September 20, 1993; 330 (3): 343-6.

???pagination.result.page??? ???pagination.result.prev??? 1 2 ???pagination.result.next???