Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (610) GO Terms (6) Nucleotides (172) Proteins (63) Interactants (1946) Wiki
XB--486770

Papers associated with gsc



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The community effect in Xenopus myogenesis is promoted by dorsalizing factors., Carnac G, Gurdon JB., Int J Dev Biol. June 1, 1997; 41 (3): 521-4.        


Xwnt-8 and lithium can act upon either dorsal mesodermal or neurectodermal cells to cause a loss of forebrain in Xenopus embryos., Fredieu JR, Cui Y, Maier D, Danilchik MV, Christian JL., Dev Biol. June 1, 1997; 186 (1): 100-14.                


Analysis of competence and of Brachyury autoinduction by use of hormone-inducible Xbra., Tada M, O'Reilly MA, Smith JC., Development. June 1, 1997; 124 (11): 2225-34.                      


A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation., Horb ME, Thomsen GH., Development. May 1, 1997; 124 (9): 1689-98.                    


Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer., Joseph EM, Melton DA., Dev Biol. April 15, 1997; 184 (2): 367-72.        


Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer., Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis EM., Cell. March 21, 1997; 88 (6): 747-56.              


XIPOU 2 is a potential regulator of Spemann's Organizer., Witta SE, Sato SM., Development. March 1, 1997; 124 (6): 1179-89.                


XBMP-1B (Xtld), a Xenopus homolog of dorso-ventral polarity gene in Drosophila, modifies tissue phenotypes of ventral explants., Lin JJ, Maeda R, Ong RC, Kim J, Lee LM, Kung H, Maéno M., Dev Growth Differ. February 1, 1997; 39 (1): 43-51.                


Transcription factors and head formation in vertebrates., Bally-Cuif L, Boncinelli E., Bioessays. February 1, 1997; 19 (2): 127-35.


Xbap, a vertebrate gene related to bagpipe, is expressed in developing craniofacial structures and in anterior gut muscle., Newman CS, Grow MW, Cleaver O, Chia F, Krieg P., Dev Biol. January 15, 1997; 181 (2): 223-33.            


Differential effects on Xenopus development of interference with type IIA and type IIB activin receptors., New HV, Kavka AI, Smith JC, Green JB., Mech Dev. January 1, 1997; 61 (1-2): 175-86.          


Graded amounts of Xenopus dishevelled specify discrete anteroposterior cell fates in prospective ectoderm., Itoh K, Sokol SY., Mech Dev. January 1, 1997; 61 (1-2): 113-25.


Localized axis determinant in the early cleavage embryo of the goldfish, Carassius auratus., Mizuno T, Yamaha E, Yamazaki F., Dev Genes Evol. January 1, 1997; 206 (6): 389-396.


Eomesodermin, a key early gene in Xenopus mesoderm differentiation., Ryan K, Garrett N, Mitchell A, Gurdon JB., Cell. December 13, 1996; 87 (6): 989-1000.      


The vertebrate organizer: structure and molecules., Lemaire P, Kodjabachian L., Trends Genet. December 1, 1996; 12 (12): 525-31.


The Xenopus T-box gene, Antipodean, encodes a vegetally localised maternal mRNA and can trigger mesoderm formation., Stennard F, Carnac G, Gurdon JB., Development. December 1, 1996; 122 (12): 4179-88.      


Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation., Lustig KD, Kroll KL, Sun EE, Kirschner MW., Development. December 1, 1996; 122 (12): 4001-12.                  


Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins., Agulnick AD, Taira M, Breen JJ, Tanaka T, Dawid IB, Westphal H., Nature. November 21, 1996; 384 (6606): 270-2.


Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos., Hoppler S, Brown JD, Moon RT., Genes Dev. November 1, 1996; 10 (21): 2805-17.            


Analysis of Dishevelled signalling pathways during Xenopus development., Sokol SY., Curr Biol. November 1, 1996; 6 (11): 1456-67.                  


A Xenopus nodal-related gene that acts in synergy with noggin to induce complete secondary axis and notochord formation., Lustig KD, Kroll K, Sun E, Ramos R, Elmendorf H, Kirschner MW., Development. October 1, 1996; 122 (10): 3275-82.                


The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm., Carnac G, Kodjabachian L, Gurdon JB, Lemaire P., Development. October 1, 1996; 122 (10): 3055-65.              


The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm., Onichtchouk D, Gawantka V, Dosch R, Delius H, Hirschfeld K, Blumenstock C, Niehrs C., Development. October 1, 1996; 122 (10): 3045-53.                  


An experimental system for analyzing response to a morphogen gradient., Gurdon JB, Mitchell A, Ryan K., Proc Natl Acad Sci U S A. September 3, 1996; 93 (18): 9334-8.


XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos., Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destrée O, Clevers H., Cell. August 9, 1996; 86 (3): 391-9.            


Modulation of Xenopus embryo mesoderm-specific gene expression and dorsoanterior patterning by receptors that activate the phosphatidylinositol cycle signal transduction pathway., Ault KT, Durmowicz G, Galione A, Harger PL, Busa WB., Development. July 1, 1996; 122 (7): 2033-41.          


A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos., Ault KT, Dirksen ML, Jamrich M., Proc Natl Acad Sci U S A. June 25, 1996; 93 (13): 6415-20.          


Drosophila goosecoid participates in neural development but not in body axis formation., Hahn M, Jäckle H., EMBO J. June 17, 1996; 15 (12): 3077-84.


Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox., Schmidt JE, von Dassow G, Kimelman D., Development. June 1, 1996; 122 (6): 1711-21.                    


Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development., Torres MA, Yang-Snyder JA, Purcell SM, DeMarais AA, McGrew LL, Moon RT., J Cell Biol. June 1, 1996; 133 (5): 1123-37.              


A functional homologue of goosecoid in Drosophila., Goriely A, Stella M, Coffinier C, Kessler D, Mailhos C, Dessain S, Desplan C., Development. May 1, 1996; 122 (5): 1641-50.    


Bone morphogenetic protein-4 (BMP-4) acts during gastrula stages to cause ventralization of Xenopus embryos., Jones CM, Dale L, Hogan BL, Wright CV, Smith JC., Development. May 1, 1996; 122 (5): 1545-54.                


The organizer formation: two molecules are better than one., Lombardo A., Bioessays. April 1, 1996; 18 (4): 267-70.


N-acetyl-cysteine causes a late re-specification of the anteroposterior axis in the Xenopus embryo., Gatherer D, Woodland HR., Dev Dyn. April 1, 1996; 205 (4): 395-409.


Nuclear transplantation from stably transfected cultured cells of Xenopus., Chan AP, Gurdon JB., Int J Dev Biol. April 1, 1996; 40 (2): 441-51.                


Retinoid X receptor-selective ligands produce malformations in Xenopus embryos., Minucci S, Saint-Jeannet JP, Toyama R, Scita G, DeLuca LM, Tiara M, Levin AA, Ozato K, Dawid IB., Proc Natl Acad Sci U S A. March 5, 1996; 93 (5): 1803-7.


A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers., Launay C, Fromentoux V, Shi DL, Boucaut JC., Development. March 1, 1996; 122 (3): 869-80.                


Competition between noggin and bone morphogenetic protein 4 activities may regulate dorsalization during Xenopus development., Re'em-Kalma Y, Lamb T, Frank D., Proc Natl Acad Sci U S A. December 19, 1995; 92 (26): 12141-5.


Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1., Gawantka V, Delius H, Hirschfeld K, Blumenstock C, Niehrs C., EMBO J. December 15, 1995; 14 (24): 6268-79.


Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse., Watabe T, Kim S, Candia A, Rothbächer U, Hashimoto C, Inoue K, Cho KW., Genes Dev. December 15, 1995; 9 (24): 3038-50.


Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal-ventral patterning., Schmidt J, Francois V, Bier E, Kimelman D., Development. December 1, 1995; 121 (12): 4319-28.                


Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer., Moos M, Wang S, Krinks M., Development. December 1, 1995; 121 (12): 4293-301.                  


The identification of two novel ligands of the FGF receptor by a yeast screening method and their activity in Xenopus development., Kinoshita N, Minshull J, Kirschner MW., Cell. November 17, 1995; 83 (4): 621-30.                  


Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation., Jones CM, Kuehn MR, Hogan BL, Smith JC, Wright CV., Development. November 1, 1995; 121 (11): 3651-62.                


Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern., Lamb TM, Harland RM., Development. November 1, 1995; 121 (11): 3627-36.          


Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis., Vodicka MA, Gerhart JC., Development. November 1, 1995; 121 (11): 3505-18.                  


The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: a loss-of-function study using antisense RNA., Steinbeisser H, Fainsod A, Niehrs C, Sasai Y, De Robertis EM., EMBO J. November 1, 1995; 14 (21): 5230-43.


Axis formation in zebrafish., Driever W., Curr Opin Genet Dev. October 1, 1995; 5 (5): 610-8.


Induction of a secondary embryonic axis in zebrafish occurs following the overexpression of beta-catenin., Kelly GM, Erezyilmaz DF, Moon RT., Mech Dev. October 1, 1995; 53 (2): 261-73.


PDGF signalling is required for gastrulation of Xenopus laevis., Ataliotis P, Symes K, Chou MM, Ho L, Mercola M., Development. September 1, 1995; 121 (9): 3099-110.                  

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???