Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (109) GO Terms (8) Nucleotides (96) Proteins (50) Interactants (371) Wiki
XB-GENEPAGE-1000155

Papers associated with gcg



???displayGene.coCitedPapers???
8 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Discovery of a potent and long-acting Xenopus GLP-1-based GLP-1/glucagon/Y2 receptor triple agonist., Yuan Y, Yan Z, Lao Q, Jiang N, Wu S, Lu Q, Han J, Zhao S., Eur J Med Chem. February 5, 2023; 247 115036.


Xenopus GLP-1-based glycopeptides as dual glucagon-like peptide 1 receptor/glucagon receptor agonists with improved in vivo stability for treating diabetes and obesity., Li Q, Yang Q, Han J, Liu X, Fu J, Yin J., Chin J Nat Med. November 1, 2022; 20 (11): 863-872.


A GLP-1/glucagon (GCG)/CCK2 receptors tri-agonist provides new therapy for obesity and diabetes., Zhao S, Yan Z, Du Y, Li Z, Tang C, Jing L, Sun L, Yang Q, Tang X, Yuan Y, Han J, Jiang N., Br J Pharmacol. September 1, 2022; 179 (17): 4360-4377.


Nutritional control of thyroid morphogenesis through gastrointestinal hormones., Takagishi M, Aleogho BM, Okumura M, Ushida K, Yamada Y, Seino Y, Fujimura S, Nakashima K, Shindo A., Curr Biol. April 11, 2022; 32 (7): 1485-1496.e4.                            


Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents., Yang Q, Zhou F, Tang X, Wang J, Feng H, Jiang W, Jin L, Jiang N, Yuan Y, Han J, Yan Z., Eur J Med Chem. April 5, 2022; 233 114214.


Stapled, Long-Acting Xenopus GLP-1-Based Dual GLP-1/Glucagon Receptor Agonists with Potent Therapeutic Efficacy for Metabolic Disease., Han C, Sun Y, Yang Q, Zhou F, Chen X, Wu L, Sun L, Han J., Mol Pharm. August 2, 2021; 18 (8): 2906-2923.


Design of novel Xenopus GLP-1-based dual glucagon-like peptide 1 (GLP-1)/glucagon receptor agonists., Jiang N, Jing L, Li Q, Su S, Yang Q, Zhou F, Chen X, Han J, Tang C, Tang W., Eur J Med Chem. February 15, 2021; 212 113118.


Stapled and Xenopus Glucagon-Like Peptide 1 (GLP-1)-Based Dual GLP-1/Gastrin Receptor Agonists with Improved Metabolic Benefits in Rodent Models of Obesity and Diabetes., Chen X, Fu J, Zhou F, Yang Q, Wang J, Feng H, Jiang W, Jin L, Tang X, Jiang N, Yin J, Han J., J Med Chem. November 12, 2020; 63 (21): 12595-12613.


Rational design and biological evaluation of gemfibrozil modified Xenopus GLP-1 derivatives as long-acting hypoglycemic agents., Han J, Fu J, Yang Q, Zhou F, Chen X, Li C, Yin J., Eur J Med Chem. July 15, 2020; 198 112389.


The chronic administration of two novel long-acting Xenopus glucagon-like peptide-1 analogs xGLP159 and xGLP296 potently improved systemic metabolism and glycemic control in rodent models., Han J, Meng T, Chen X, Han Y, Fu J, Zhou F, Fei Y, Li C., FASEB J. June 1, 2019; 33 (6): 7113-7125.


Xenopus slc7a5 is essential for notochord function and eye development., Katada T, Sakurai H., Mech Dev. February 1, 2019; 155 48-59.                


Lipidation and conformational constraining for prolonging the effects of peptides: Xenopus glucagon-like peptide 1 analogues with potent and long-acting hypoglycemic activity., Han J, Huang Y, Chen X, Zhou F, Fei Y, Fu J., Eur J Pharm Sci. October 15, 2018; 123 111-123.


Rational design of dimeric lipidated Xenopus glucagon-like peptide 1 analogues as long-acting antihyperglycaemic agents., Han J, Huang Y, Chen X, Zhou F, Fei Y, Fu J., Eur J Med Chem. September 5, 2018; 157 177-187.


Lithocholic Acid-Based Peptide Delivery System for an Enhanced Pharmacological and Pharmacokinetic Profile of Xenopus GLP-1 Analogs., Han J, Chen X, Zhao L, Fu J, Sun L, Zhang Y, Zhou F, Fei Y., Mol Pharm. July 2, 2018; 15 (7): 2840-2856.


Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis., Gere-Becker MB, Pommerenke C, Lingner T, Pieler T., Development. June 8, 2018; 145 (12):                                   


Preparation and Pharmaceutical Characterizations of Lipidated Dimeric Xenopus Glucagon-Like Peptide-1 Conjugates., Han J, Zhou F, Fei Y, Chen X, Fu J, Qian H., Bioconjug Chem. February 21, 2018; 29 (2): 390-402.


Xenopus-derived glucagon-like peptide-1 and polyethylene-glycosylated glucagon-like peptide-1 receptor agonists: long-acting hypoglycaemic and insulinotropic activities with potential therapeutic utilities., Han J, Fei Y, Zhou F, Chen X, Zhang Y, Liu L, Fu J., Br J Pharmacol. February 1, 2018; 175 (3): 544-557.


Synthesis and pharmaceutical characterization of site specific mycophenolic acid-modified Xenopus glucagon-like peptide-1 analogs., Han J, Fu J, Sun L, Han Y, Mao Q, Liao F, Zheng X, Zhu K., Medchemcomm. November 7, 2017; 9 (1): 67-80.


Micellar Nanomedicine of Novel Fatty Acid Modified Xenopus Glucagon-like Peptide-1: Improved Physicochemical Characteristics and Therapeutic Utilities for Type 2 Diabetes., Han J, Fei Y, Zhou F, Chen X, Zheng W, Fu J., Mol Pharm. November 6, 2017; 14 (11): 3954-3967.


Xenopus GLP-1-inspired discovery of novel GLP-1 receptor agonists as long-acting hypoglycemic and insulinotropic agents with significant therapeutic potential., Han J, Chen X, Wang Y, Fei Y, Zhou F, Zhang Y, Liu L, Si P, Fu J., Biochem Pharmacol. October 15, 2017; 142 155-167.


Design, synthesis and biological evaluation of PEGylated Xenopus glucagon-like peptide-1 derivatives as long-acting hypoglycemic agents., Han J, Wang Y, Meng Q, Li G, Huang F, Wu S, Fei Y, Zhou F, Fu J., Eur J Med Chem. May 26, 2017; 132 81-89.


Tumor protein Tctp regulates axon development in the embryonic visual system., Roque CG, Wong HH, Lin JQ, Holt CE., Development. April 1, 2016; 143 (7): 1134-48.                                  


Functional Pairing of Class B1 Ligand-GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/Glucagon Receptor Family., On JS, Duan C, Chow BK, Lee LT., Mol Biol Evol. August 1, 2015; 32 (8): 2048-59.


Distinct action of the α-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion., Lee EY, Kaneko S, Jutabha P, Zhang X, Seino S, Jomori T, Anzai N, Miki T., J Endocrinol. March 1, 2015; 224 (3): 205-14.            


Magainin-AM2 improves glucose homeostasis and beta cell function in high-fat fed mice., Ojo OO, Srinivasan DK, Owolabi BO, Conlon JM, Flatt PR, Abdel-Wahab YH., Biochim Biophys Acta. January 1, 2015; 1850 (1): 80-7.


A Novel Long-Acting Glucagon-Like Peptide-1 Agonist with Improved Efficacy in Insulin Secretion and β-Cell Growth., Kim HY, Hwang JI, Moon MJ, Seong JY., Endocrinol Metab (Seoul). September 1, 2014; 29 (3): 320-7.        


A novel glucagon-related peptide (GCRP) and its receptor GCRPR account for coevolution of their family members in vertebrates., Park CR, Moon MJ, Park S, Kim DK, Cho EB, Millar RP, Hwang JI, Seong JY., PLoS One. June 11, 2013; 8 (6): e65420.              


Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells., Ojo OO, Conlon JM, Flatt PR, Abdel-Wahab YH., Biochem Biophys Res Commun. February 1, 2013; 431 (1): 14-8.    


Discovery of a novel glucagon-like peptide (GCGL) and its receptor (GCGLR) in chickens: evidence for the existence of GCGL and GCGLR genes in nonmammalian vertebrates., Wang Y, Meng F, Zhong Y, Huang G, Li J., Endocrinology. November 1, 2012; 153 (11): 5247-60.


Characterization of glucagon-like peptide 1 receptor (GLP1R) gene in chickens: functional analysis, tissue distribution, and identification of its transcript variants., Huang G, Li J, Fu H, Yan Z, Bu G, He X, Wang Y., Domest Anim Endocrinol. July 1, 2012; 43 (1): 1-15.


Homeoprotein hhex-induced conversion of intestinal to ventral pancreatic precursors results in the formation of giant pancreata in Xenopus embryos., Zhao H, Han D, Dawid IB, Pieler T, Chen Y, Chen Y., Proc Natl Acad Sci U S A. May 29, 2012; 109 (22): 8594-9.                              


Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells., Oropeza D, Horb M., Genesis. March 1, 2012; 50 (3): 271-85.                        


Xenopus staufen2 is required for anterior endodermal organ formation., Bilogan CK, Horb ME., Genesis. March 1, 2012; 50 (3): 251-9.                      


Evolutionary expression of glucose-dependent-insulinotropic polypeptide (GIP)., Musson MC, Jepeal LI, Finnerty JR, Wolfe MM., Regul Pept. November 10, 2011; 171 (1-3): 26-34.


Incretin hormones and the expanding families of glucagon-like sequences and their receptors., Irwin DM, Prentice KJ., Diabetes Obes Metab. October 1, 2011; 13 Suppl 1 69-81.


Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin., Tam JK, Lau KW, Lee LT, Chu JY, Ng KM, Fournier A, Vaudry H, Chow BK., PLoS One. April 1, 2011; 6 (4): e19384.            


Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes., Pearl EJ, Jarikji Z, Horb ME., Dev Biol. March 1, 2011; 351 (1): 135-45.                    


BrunoL1 regulates endoderm proliferation through translational enhancement of cyclin A2 mRNA., Horb LD, Horb ME., Dev Biol. September 15, 2010; 345 (2): 156-69.                


The serendipitous origin of chordate secretin peptide family members., Cardoso JC, Vieira FA, Gomes AS, Power DM., BMC Evol Biol. May 6, 2010; 10 135.            


Rgs16 and Rgs8 in embryonic endocrine pancreas and mouse models of diabetes., Villasenor A, Wang ZV, Rivera LB, Ocal O, Asterholm IW, Scherer PE, Brekken RA, Cleaver O, Wilkie TM., Dis Model Mech. January 1, 2010; 3 (9-10): 567-80.


Xenopus insm1 is essential for gastrointestinal and pancreatic endocrine cell development., Horb LD, Jarkji ZH, Horb ME., Dev Dyn. October 1, 2009; 238 (10): 2505-10.                


Xenopus pancreas development., Pearl EJ, Bilogan CK, Mukhi S, Brown DD, Horb ME., Dev Dyn. June 1, 2009; 238 (6): 1271-86.          


The tetraspanin Tm4sf3 is localized to the ventral pancreas and regulates fusion of the dorsal and ventral pancreatic buds., Jarikji Z, Horb LD, Shariff F, Mandato CA, Cho KW, Horb ME., Development. June 1, 2009; 136 (11): 1791-800.                  


Cloning, tissue distribution, and functional characterization of chicken glucagon receptor., Wang J, Wang Y, Li X, Li J, Leung FC., Poult Sci. December 1, 2008; 87 (12): 2678-88.


Gene organization, evolution and expression of the microtubule-associated protein ASAP (MAP9)., Venoux M, Delmouly K, Milhavet O, Vidal-Eychenié S, Giorgi D, Rouquier S., BMC Genomics. September 9, 2008; 9 406.                      


Differential ability of Ptf1a and Ptf1a-VP16 to convert stomach, duodenum and liver to pancreas., Jarikji ZH, Vanamala S, Beck CW, Wright CV, Leach SD, Horb ME., Dev Biol. April 15, 2007; 304 (2): 786-99.                


Target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (t-SNAREs) differently regulate activation and inactivation gating of Kv2.2 and Kv2.1: Implications on pancreatic islet cell Kv channels., Wolf-Goldberg T, Michaelevski I, Sheu L, Gaisano HY, Chikvashvili D, Lotan I., Mol Pharmacol. September 1, 2006; 70 (3): 818-28.


Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations., Pearson ER, Flechtner I, Njølstad PR, Malecki MT, Flanagan SE, Larkin B, Ashcroft FM, Klimes I, Codner E, Iotova V, Slingerland AS, Shield J, Robert JJ, Holst JJ, Clark PM, Ellard S, Søvik O, Polak M, Hattersley AT, Neonatal Diabetes International Collaborative Group., N Engl J Med. August 3, 2006; 355 (5): 467-77.


Combined ectopic expression of Pdx1 and Ptf1a/p48 results in the stable conversion of posterior endoderm into endocrine and exocrine pancreatic tissue., Afelik S, Chen Y, Pieler T., Genes Dev. June 1, 2006; 20 (11): 1441-6.                        


Wnt5 signaling in vertebrate pancreas development., Kim HJ, Schleiffarth JR, Jessurun J, Sumanas S, Petryk A, Lin S, Ekker SC., BMC Biol. October 24, 2005; 3 23.                    

???pagination.result.page??? 1 2 3 ???pagination.result.next???