Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (18) GO Terms (6) Nucleotides (242) Proteins (65) Interactants (162) Wiki
XB-GENEPAGE-1003102

Papers associated with parn



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The translational functions of embryonic poly(A)-binding protein during gametogenesis and early embryo development., Ozturk S., Mol Reprod Dev. November 1, 2019; 86 (11): 1548-1560.          


High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration., Owens DA, Butler AM, Aguero TH, Newman KM, Van Booven D, King ML., Development. January 15, 2017; 144 (2): 292-304.                                                                                        


CPEB4 is regulated during cell cycle by ERK2/Cdk1-mediated phosphorylation and its assembly into liquid-like droplets., Guillén-Boixet J, Buzon V, Salvatella X, Méndez R., Elife. November 1, 2016; 5                                                             


A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence., Bukhari SIA, Truesdell SS, Lee S, Kollu S, Classon A, Boukhali M, Jain E, Mortensen RD, Yanagiya A, Sadreyev RI, Haas W, Vasudevan S., Mol Cell. March 3, 2016; 61 (5): 760-773.


Musashi protein-directed translational activation of target mRNAs is mediated by the poly(A) polymerase, germ line development defective-2., Cragle C, MacNicol AM., J Biol Chem. May 16, 2014; 289 (20): 14239-51.            


PolyA-specific ribonuclease (PARN-1) function in stage-specific mRNA turnover in Trypanosoma brucei., Utter CJ, Garcia SA, Milone J, Bellofatto V., Eukaryot Cell. September 1, 2011; 10 (9): 1230-40.


Biochemical characterization of Pumilio1 and Pumilio2 in Xenopus oocytes., Ota R, Kotani T, Yamashita M., J Biol Chem. January 28, 2011; 286 (4): 2853-63.


The nuclear experience of CPEB: implications for RNA processing and translational control., Lin CL, Evans V, Shen S, Xing Y, Richter JD., RNA. February 1, 2010; 16 (2): 338-48.


Translational control by cytoplasmic polyadenylation in Xenopus oocytes., Radford HE, Meijer HA, de Moor CH., Biochim Biophys Acta. April 1, 2008; 1779 (4): 217-29.      


Measuring CPEB-mediated cytoplasmic polyadenylation-deadenylation in Xenopus laevis oocytes and egg extracts., Kim JH, Richter JD., Methods Enzymol. January 1, 2008; 448 119-38.


CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes., Minshall N, Reiter MH, Weil D, Standart N., J Biol Chem. December 28, 2007; 282 (52): 37389-401.


RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB., Kim JH, Richter JD., Genes Dev. October 15, 2007; 21 (20): 2571-9.


Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation., Kim JH, Richter JD., Mol Cell. October 20, 2006; 24 (2): 173-83.


CUG-BP binds to RNA substrates and recruits PARN deadenylase., Moraes KC, Wilusz CJ, Wilusz J., RNA. June 1, 2006; 12 (6): 1084-91.


mRNA deadenylation by PARN is essential for embryogenesis in higher plants., Reverdatto SV, Dutko JA, Chekanova JA, Hamilton DA, Belostotsky DA., RNA. August 1, 2004; 10 (8): 1200-14.


Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA., Baggs JE, Green CB., Curr Biol. February 4, 2003; 13 (3): 189-98.          


The mechanism and regulation of deadenylation: identification and characterization of Xenopus PARN., Copeland PR, Wormington M., RNA. June 1, 2001; 7 (6): 875-86.


Cap-dependent deadenylation of mRNA., Dehlin E, Wormington M, Körner CG, Wahle E., EMBO J. March 1, 2000; 19 (5): 1079-86.

???pagination.result.page??? 1