Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (46) GO Terms (12) Nucleotides (19) Proteins (15) Interactants (342) Wiki

Papers associated with mcidas

Search for mcidas morpholinos using Textpresso

Limit to papers also referencing gene:
11 paper(s) referencing morpholinos

Results 1 - 46 of 46 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Conservation as well as divergence in Mcidas function underlies the differentiation of multiciliated cells in vertebrates., Zhou F, Rayamajhi D, Ravi V, Narasimhan V, Chong YL, Lu H, Venkatesh B, Roy S., Dev Biol. September 15, 2020; 465 (2): 168-177.

Mcidas mutant mice reveal a two-step process for the specification and differentiation of multiciliated cells in mammals., Lu H, Anujan P, Zhou F, Zhang Y, Chong YL, Bingle CD, Roy S., Development. January 1, 2019; 146 (6):

CLAMP/Spef1 regulates planar cell polarity signaling and asymmetric microtubule accumulation in the Xenopus ciliated epithelia., Kim SK, Zhang S, Werner ME, Brotslaw EJ, Mitchell JW, Altabbaa MM, Mitchell BJ., J Cell Biol. January 1, 2018; 217 (5): 1633-1641.          

TRRAP is a central regulator of human multiciliated cell formation., Wang Z, Plasschaert LW, Aryal S, Renaud NA, Yang Z, Choo-Wing R, Pessotti AD, Kirkpatrick ND, Cochran NR, Carbone W, Maher R, Lindeman A, Russ C, Reece-Hoyes J, McAllister G, Hoffman GR, Roma G, Jaffe AB., J Cell Biol. January 1, 2018; 217 (6): 1941-1955.            

Manipulating and Analyzing Cell Type Composition of the Xenopus Mucociliary Epidermis., Walentek P., Methods Mol Biol. January 1, 2018; 1865 251-263.

The Xenopus animal cap transcriptome: building a mucociliary epithelium., Angerilli A, Smialowski P, Rupp RA., Nucleic Acids Res. January 1, 2018; 46 (17): 8772-8787.                          

WDR5 Stabilizes Actin Architecture to Promote Multiciliated Cell Formation., Kulkarni SS, Griffin JN, Date PP, Liem KF, Khokha MK., Dev Cell. January 1, 2018; 46 (5): 595-610.e3.                              

CDC20B is required for deuterosome-mediated centriole production in multiciliated cells., Revinski DR, Zaragosi LE, Boutin C, Ruiz-Garcia S, Deprez M, Thomé V, Rosnet O, Gay AS, Mercey O, Paquet A, Pons N, Ponzio G, Marcet B, Kodjabachian L, Barbry P., Nat Commun. January 1, 2018; 9 (1): 4668.

A liquid-like organelle at the root of motile ciliopathy., Huizar RL, Lee C, Boulgakov AA, Horani A, Tu F, Marcotte EM, Brody SL, Wallingford JB., Elife. January 1, 2018; 7                             

AmphiBase: A new genomic resource for non-model amphibian species., Kwon T., Genesis. January 1, 2017; 55 (1-2):

What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia., Walentek P, Quigley IK., Genesis. January 1, 2017; 55 (1-2):       

Rfx2 Stabilizes Foxj1 Binding at Chromatin Loops to Enable Multiciliated Cell Gene Expression., Quigley IK, Kintner C., PLoS Genet. January 1, 2017; 13 (1): e1006538.            

La-related protein 6 controls ciliated cell differentiation., Manojlovic Z, Earwood R, Kato A, Perez D, Cabrera OA, Didier R, Megraw TL, Stefanovic B, Kato Y., Cilia. January 1, 2017; 6 4.                

Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis., Walentek P, Quigley IK, Sun DI, Sajjan UK, Kintner C, Harland RM., Elife. September 13, 2016; 5                                   

Systematic Analysis of CCNO Variants in a Defined Population: Implications for Clinical Phenotype and Differential Diagnosis., Amirav I, Wallmeier J, Loges NT, Menchen T, Pennekamp P, Mussaffi H, Abitbul R, Avital A, Bentur L, Dougherty GW, Nael E, Lavie M, Olbrich H, Werner C, Kintner C, Omran H, null null., Hum Mutat. April 1, 2016; 37 (4): 396-405.

MicroRNAs as key regulators of GTPase-mediated apical actin reorganization in multiciliated epithelia., Mercey O, Kodjabachian L, Barbry P, Marcet B., Small GTPases. January 1, 2016; 7 (2): 54-8.  

The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis., Villa M, Crotta S, Dingwell KS, Hirst EM, Gialitakis M, Ahlfors H, Smith JC, Stockinger B, Wack A., Nat Commun. January 1, 2016; 7 12652.            

Foxn4 promotes gene expression required for the formation of multiple motile cilia., Campbell EP, Quigley IK, Kintner C., Development. January 1, 2016; 143 (24): 4654-4664.                                  

Gmnc Is a Master Regulator of the Multiciliated Cell Differentiation Program., Zhou F, Narasimhan V, Shboul M, Chong YL, Reversade B, Roy S., Curr Biol. December 21, 2015; 25 (24): 3267-73.                

ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia., Walentek P, Beyer T, Hagenlocher C, Müller C, Feistel K, Schweickert A, Harland RM, Blum M., Dev Biol. December 15, 2015; 408 (2): 292-304.                              

Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus., Thélie A, Desiderio S, Hanotel J, Quigley I, Van Driessche B, Rodari A, Borromeo MD, Kricha S, Lahaye F, Croce J, Cerda-Moya G, Ordoño Fernandez J, Bolle B, Lewis KE, Sander M, Pierani A, Schubert M, Johnson JE, Kintner CR, Pieler T, Van Lint C, Henningfeld KA, Bellefroid EJ, Van Campenhout C., Development. October 1, 2015; 142 (19): 3416-28.                                    

miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways., Chevalier B, Adamiok A, Mercey O, Revinski DR, Zaragosi LE, Pasini A, Kodjabachian L, Barbry P, Marcet B., Nat Commun. September 18, 2015; 6 8386.                

BMP signalling controls the construction of vertebrate mucociliary epithelia., Cibois M, Luxardi G, Chevalier B, Thomé V, Mercey O, Zaragosi LE, Barbry P, Pasini A, Marcet B, Kodjabachian L., Development. July 1, 2015; 142 (13): 2352-63.                        

TGF-β Signaling Regulates the Differentiation of Motile Cilia., Tözser J, Earwood R, Kato A, Brown J, Tanaka K, Didier R, Megraw TL, Blum M, Kato Y., Cell Rep. May 19, 2015; 11 (7): 1000-7.                

Centriole biogenesis and function in multiciliated cells., Zhang S, Mitchell BJ., Methods Cell Biol. January 1, 2015; 129 103-127.

Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program., Chiu WT, Charney Le R, Blitz IL, Fish MB, Li Y, Biesinger J, Xie X, Cho KW., Development. December 1, 2014; 141 (23): 4537-47.                                  

Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression., Shi J, Zhao Y, Galati D, Winey M, Klymkowsky MW., Dev Biol. November 15, 2014; 395 (2): 287-98.                    

Multiciliogenesis: multicilin directs transcriptional activation of centriole formation., Balestra FR, Gönczy P., Curr Biol. August 18, 2014; 24 (16): R746-9.

MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia., Boon M, Wallmeier J, Ma L, Loges NT, Jaspers M, Olbrich H, Dougherty GW, Raidt J, Werner C, Amirav I, Hevroni A, Abitbul R, Avital A, Soferman R, Wessels M, O'Callaghan C, Chung EM, Rutman A, Hirst RA, Moya E, Mitchison HM, Van Daele S, De Boeck K, Jorissen M, Kintner C, Cuppens H, Omran H., Nat Commun. July 22, 2014; 5 4418.

Multicilin drives centriole biogenesis via E2f proteins., Ma L, Quigley I, Omran H, Kintner C., Genes Dev. July 1, 2014; 28 (13): 1461-71.          

Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia., Wallmeier J, Al-Mutairi DA, Chen CT, Loges NT, Pennekamp P, Menchen T, Ma L, Shamseldin HE, Olbrich H, Dougherty GW, Werner C, Alsabah BH, Köhler G, Jaspers M, Boon M, Griese M, Schmitt-Grohé S, Zimmermann T, Koerner-Rettberg C, Horak E, Kintner C, Alkuraya FS, Omran H., Nat Genet. June 1, 2014; 46 (6): 646-51.

RFX7 is required for the formation of cilia in the neural tube., Manojlovic Z, Earwood R, Kato A, Stefanovic B, Kato Y., Mech Dev. May 1, 2014; 132 28-37.                  

Coordinated genomic control of ciliogenesis and cell movement by RFX2., Chung MI, Kwon T, Tu F, Brooks ER, Gupta R, Meyer M, Baker JC, Marcotte EM, Wallingford JB., Elife. January 1, 2014; 3 e01439.                                          

The Geminin and Idas coiled coils preferentially form a heterodimer that inhibits Geminin function in DNA replication licensing., Caillat C, Pefani DE, Gillespie PJ, Taraviras S, Blow JJ, Lygerou Z, Perrakis A., J Biol Chem. November 1, 2013; 288 (44): 31624-34.                  

Deuterosome-mediated centriole biogenesis., Klos Dehring DA, Vladar EK, Werner ME, Mitchell JW, Hwang P, Mitchell BJ., Dev Cell. October 14, 2013; 27 (1): 103-12.

Myb promotes centriole amplification and later steps of the multiciliogenesis program., Tan FE, Vladar EK, Ma L, Fuentealba LC, Hoh R, Espinoza FH, Axelrod JD, Alvarez-Buylla A, Stearns T, Kintner C, Krasnow MA., Development. October 1, 2013; 140 (20): 4277-86.                

Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1., Hagenlocher C, Walentek P, M Ller C, Thumberger T, Feistel K., Cilia. September 24, 2013; 2 (1): 12.                  

Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration., Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E., Nat Cell Biol. February 1, 2013; 15 (2): 222-8.        

Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation., Stubbs JL, Vladar EK, Axelrod JD, Kintner C., Nat Cell Biol. January 29, 2012; 14 (2): 140-7.            

Use of tc-99m mebrofenin as a clinical probe to assess altered hepatobiliary transport: integration of in vitro, pharmacokinetic modeling, and simulation studies., Ghibellini G, Leslie EM, Pollack GM, Brouwer KL., Pharm Res. August 1, 2008; 25 (8): 1851-60.

Neuroprotective role of testosterone in the nervous system., Biaek M, Zaremba P, Borowicz KK, Czuczwar SJ., Pol J Pharmacol. September 1, 2004; 56 (5): 509-18.

Specificity of ascorbate analogs for ascorbate transport. Synthesis and detection of [(125)I]6-deoxy-6-iodo-L-ascorbic acid and characterization of its ascorbate-specific transport properties., Rumsey SC, Welch RW, Garraffo HM, Ge P, Lu SF, Crossman AT, Kirk KL, Levine M., J Biol Chem. August 13, 1999; 274 (33): 23215-22.

Synthesis of 153N-6 analogues and structure-function analysis at murine melanocortin-1 (MC1) receptors., Sahm UG, Olivier GW, Pouton CW., Peptides. January 1, 1999; 20 (3): 387-94.

Xenopus HDm, a maternally expressed histone deacetylase, belongs to an ancient family of acetyl-metabolizing enzymes., Ladomery M, Lyons S, Sommerville J., Gene. October 1, 1997; 198 (1-2): 275-80.        

Patterning of the mesoderm in Xenopus: dose-dependent and synergistic effects of Brachyury and Pintallavis., O'Reilly MA, Smith JC, Cunliffe V., Development. May 1, 1995; 121 (5): 1351-9.                  

A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage., Newport J, Kirschner M., Cell. October 1, 1982; 30 (3): 675-86.                

Page(s): 1

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556