Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (14) GO Terms (4) Nucleotides (38) Proteins (28) Interactants (88) Wiki
XB-GENEPAGE-22041719

Papers associated with il34



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Amphibian myelopoiesis., Yaparla A, Stern DB, Hossainey MRH, Crandall KA, Grayfer L., Dev Comp Immunol. September 1, 2023; 146 104701.


Amphibian (Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Antiviral Responses to Intestinal Frog Virus 3 Infections., Hauser KA, Singer JC, Hossainey MRH, Moore TE, Wendel ES, Yaparla A, Kalia N, Grayfer L., Front Immunol. January 1, 2021; 12 737403.                


Exploring the relationships between amphibian (Xenopus laevis) myeloid cell subsets., Yaparla A, Koubourli DV, Popovic M, Grayfer L., Dev Comp Immunol. December 1, 2020; 113 103798.


The amphibian (Xenopus laevis) colony-stimulating factor-1 and interleukin-34-derived macrophages possess disparate pathogen recognition capacities., Yaparla A, Docter-Loeb H, Melnyk MLS, Batheja A, Grayfer L., Dev Comp Immunol. September 1, 2019; 98 89-97.


Class A Scavenger Receptors Are Used by Frog Virus 3 During Its Cellular Entry., Vo NTK, Guerreiro M, Yaparla A, Grayfer L, DeWitte-Orr SJ., Viruses. January 23, 2019; 11 (2):       


Amphibian (Xenopus laevis) Interleukin-8 (CXCL8): A Perspective on the Evolutionary Divergence of Granulocyte Chemotaxis., Koubourli DV, Yaparla A, Popovic M, Grayfer L., Front Immunol. September 12, 2018; 9 2058.                  


Differentiation-dependent antiviral capacities of amphibian (Xenopus laevis) macrophages., Yaparla A, Popovic M, Grayfer L., J Biol Chem. February 2, 2018; 293 (5): 1736-1744.


Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis., Whitworth GB, Misaghi BC, Rosenthal DM, Mills EA, Heinen DJ, Watson AH, Ives CW, Ali SH, Bezold K, Marsh-Armstrong N, Watson FL., Dev Biol. June 15, 2017; 426 (2): 360-373.              


Long term effects of carbaryl exposure on antiviral immune responses in Xenopus laevis., De Jesús Andino F, Lawrence BP, Robert J., Chemosphere. March 1, 2017; 170 169-175.


The unique myelopoiesis strategy of the amphibian Xenopus laevis., Yaparla A, Wendel ES, Grayfer L., Dev Comp Immunol. October 1, 2016; 63 136-43.


Amphibian macrophage development and antiviral defenses., Grayfer L, Robert J., Dev Comp Immunol. May 1, 2016; 58 60-7.


Distinct functional roles of amphibian (Xenopus laevis) colony-stimulating factor-1- and interleukin-34-derived macrophages., Grayfer L, Robert J., J Leukoc Biol. October 1, 2015; 98 (4): 641-9.


Nonclassical MHC-Restricted Invariant Vα6 T Cells Are Critical for Efficient Early Innate Antiviral Immunity in the Amphibian Xenopus laevis., Edholm ES, Grayfer L, De Jesús Andino F, Robert J., J Immunol. July 15, 2015; 195 (2): 576-86.


Colony-stimulating factor-1-responsive macrophage precursors reside in the amphibian (Xenopus laevis) bone marrow rather than the hematopoietic subcapsular liver., Grayfer L, Robert J., J Innate Immun. January 1, 2013; 5 (6): 531-42.

???pagination.result.page??? 1