Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (68) GO Terms (9) Nucleotides (173) Proteins (89) Interactants (531) Wiki
XB--479278

Papers associated with eya1



???displayGene.coCitedPapers???
4 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye., Bonini NM, Leiserson WM, Benzer S., Cell. February 12, 1993; 72 (3): 379-95.


Xenopus Eya1 demarcates all neurogenic placodes as well as migrating hypaxial muscle precursors., David R, Ahrens K, Wedlich D, Schlosser G., Mech Dev. May 1, 2001; 103 (1-2): 189-92.      


Hypobranchial placodes in Xenopus laevis give rise to hypobranchial ganglia, a novel type of cranial ganglia., Schlosser G., Cell Tissue Res. April 1, 2003; 312 (1): 21-9.


A restrictive role for Hedgehog signalling during otic specification in Xenopus., Koebernick K, Hollemann T, Pieler T., Dev Biol. August 15, 2003; 260 (2): 325-38.              


Molecular anatomy of placode development in Xenopus laevis., Schlosser G, Ahrens K., Dev Biol. July 15, 2004; 271 (2): 439-66.                          


Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor., Brugmann SA, Pandur PD, Kenyon KL, Pignoni F, Moody SA., Development. December 1, 2004; 131 (23): 5871-81.                    


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA, Voigt J, Gilchrist M, Papalopulu N, Amaya E., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


EYA1 expression in the developing inner ear., Bane BC, Van Rybroek JM, Kolker SJ, Weeks DL, Manaligod JM., Ann Otol Rhinol Laryngol. November 1, 2005; 114 (11): 853-8.


Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis., Ahrens K, Schlosser G., Dev Biol. December 1, 2005; 288 (1): 40-59.            


Induction and specification of cranial placodes., Schlosser G., Dev Biol. June 15, 2006; 294 (2): 303-51.                


Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells., James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM., Development. August 1, 2006; 133 (15): 2995-3004.


The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border., Hong CS, Saint-Jeannet JP., Mol Biol Cell. June 1, 2007; 18 (6): 2192-202.                


Regulation of otic vesicle and hair cell stereocilia morphogenesis by Ena/VASP-like (Evl) in Xenopus., Wanner SJ, Miller JR., J Cell Sci. August 1, 2007; 120 (Pt 15): 2641-51.          


Differential expression of Eya1 and Eya2 during chick early embryonic development., Ishihara T, Ikeda K, Sato S, Yajima H, Kawakami K., Gene Expr Patterns. May 1, 2008; 8 (5): 357-67.


Pleiotropic effects in Eya3 knockout mice., Söker T, Dalke C, Puk O, Floss T, Becker L, Bolle I, Favor J, Hans W, Hölter SM, Horsch M, Kallnik M, Kling E, Moerth C, Schrewe A, Stigloher C, Topp S, Gailus-Durner V, Naton B, Beckers J, Fuchs H, Ivandic B, Klopstock T, Schulz H, Wolf E, Wurst W, Bally-Cuif L, de Angelis MH, Graw J., BMC Dev Biol. June 23, 2008; 8 118.                    


Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion., Schlosser G, Awtry T, Brugmann SA, Jensen ED, Neilson K, Ruan G, Stammler A, Voelker D, Yan B, Zhang C, Klymkowsky MW, Moody SA., Dev Biol. August 1, 2008; 320 (1): 199-214.                  


Cold-inducible RNA binding protein (CIRP), a novel XTcf-3 specific target gene regulates neural development in Xenopus., van Venrooy S, Fichtner D, Kunz M, Wedlich D, Gradl D., BMC Dev Biol. August 7, 2008; 8 77.                                


Making senses development of vertebrate cranial placodes., Schlosser G., Int Rev Cell Mol Biol. January 1, 2010; 283 129-234.


EYA1 mutations associated with the branchio-oto-renal syndrome result in defective otic development in Xenopus laevis., Li Y, Manaligod JM, Weeks DL., Biol Cell. February 17, 2010; 102 (5): 277-92.                  


Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR., Sato S, Ikeda K, Shioi G, Ochi H, Ogino H, Yajima H, Kawakami K., Dev Biol. August 1, 2010; 344 (1): 158-71.  


Developmental expression patterns of candidate cofactors for vertebrate six family transcription factors., Neilson KM, Pignoni F, Yan B, Moody SA., Dev Dyn. December 1, 2010; 239 (12): 3446-66.                                                                          


Circadian Cycles of Gene Expression in the Coral, Acropora millepora., Brady AK, Snyder KA, Vize PD., PLoS One. January 1, 2011; 6 (9): e25072.      


Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm., Pieper M, Ahrens K, Rink E, Peter A, Schlosser G., Development. March 1, 2012; 139 (6): 1175-87.                    


RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm., Janesick A, Shiotsugu J, Taketani M, Blumberg B., Development. March 1, 2012; 139 (6): 1213-24.                        


Transcription factors involved in lens development from the preplacodal ectoderm., Ogino H, Ochi H, Reza HM, Yasuda K., Dev Biol. March 15, 2012; 363 (2): 333-47.      


New developments in the second heart field., Zaffran S, Kelly RG., Differentiation. July 1, 2012; 84 (1): 17-24.


Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning., Steventon B, Mayor R, Streit A., Dev Biol. July 1, 2012; 367 (1): 55-65.                


The phosphatase-transcription activator EYA1 is targeted by anaphase-promoting complex/Cdh1 for degradation at M-to-G1 transition., Sun J, Karoulia Z, Wong EY, Ahmed M, Itoh K, Xu PX., Mol Cell Biol. March 1, 2013; 33 (5): 927-36.


Early embryonic specification of vertebrate cranial placodes., Schlosser G., Wiley Interdiscip Rev Dev Biol. January 1, 2014; 3 (5): 349-63.


The evolutionary history of vertebrate cranial placodes--I: cell type evolution., Patthey C, Schlosser G, Shimeld SM., Dev Biol. May 1, 2014; 389 (1): 82-97.        


The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning., Schlosser G, Patthey C, Shimeld SM., Dev Biol. May 1, 2014; 389 (1): 98-119.            


Setting appropriate boundaries: fate, patterning and competence at the neural plate border., Groves AK, LaBonne C., Dev Biol. May 1, 2014; 389 (1): 2-12.    


Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt and FGF signaling., Watanabe T, Kanai Y, Matsukawa S, Michiue T., Genesis. October 1, 2014; .


Xenopus Nkx6.3 is a neural plate border specifier required for neural crest development., Zhang Z, Shi Y, Shi Y, Zhao S, Li J, Li C, Mao B., PLoS One. December 15, 2014; 9 (12): e115165.            


Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context., Jahan I, Pan N, Fritzsch B., Front Cell Neurosci. February 5, 2015; 9 26.  


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM, Hawrot K, Sharpe C, Noble A, Wood WM, Jorge EC, Goldhamer DJ, Kardon G, Dietrich S., Front Aging Neurosci. May 19, 2015; 7 62.                                            


Zic1 controls placode progenitor formation non-cell autonomously by regulating retinoic acid production and transport., Jaurena MB, Juraver-Geslin H, Devotta A, Saint-Jeannet JP., Nat Commun. June 23, 2015; 6 7476.            


Using Xenopus to discover new genes involved in branchiootorenal spectrum disorders., Moody SA, Neilson KM, Kenyon KL, Alfandari D, Alfandari D, Pignoni F., Comp Biochem Physiol C Toxicol Pharmacol. December 1, 2015; 178 16-24.


Using Xenopus to study genetic kidney diseases., Lienkamp SS., Semin Cell Dev Biol. March 1, 2016; 51 117-24.    


E-cadherin is required for cranial neural crest migration in Xenopus laevis., Huang C, Kratzer MC, Wedlich D, Kashef J., Dev Biol. March 15, 2016; 411 (2): 159-171.                        


In vivo confinement promotes collective migration of neural crest cells., Szabó A, Melchionda M, Nastasi G, Woods ML, Campo S, Perris R, Mayor R., J Cell Biol. June 6, 2016; 213 (5): 543-55.                


Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes., Riddiford N, Schlosser G., Elife. August 31, 2016; 5                                                                         


Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors., Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS., Nat Cell Biol. December 1, 2016; 18 (12): 1269-1280.                  


Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development., Neilson KM, Abbruzzesse G, Kenyon K, Bartolo V, Krohn P, Alfandari D, Alfandari D, Moody SA., Dev Biol. January 15, 2017; 421 (2): 171-182.                    


Identification of novel cis-regulatory elements of Eya1 in Xenopus laevis using BAC recombineering., Maharana SK, Pollet N, Schlosser G., Sci Rep. November 3, 2017; 7 (1): 15033.          


Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes., Riddiford N, Schlosser G., Dev Biol. November 15, 2017; 431 (2): 152-167.                            


A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis., Maharana SK, Schlosser G., BMC Biol. July 16, 2018; 16 (1): 79.                            


Shared evolutionary origin of vertebrate neural crest and cranial placodes., Horie R, Hazbun A, Chen K, Cao C, Levine M, Horie T., Nature. August 1, 2018; 560 (7717): 228-232.      


Fam46a regulates BMP-dependent pre-placodal ectoderm differentiation in Xenopus., Watanabe T, Yamamoto T, Tsukano K, Hirano S, Horikawa A, Michiue T., Development. October 26, 2018; 145 (20):                                     


Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation., Sullivan CH, Majumdar HD, Neilson KM, Moody SA., Dev Biol. February 1, 2019; 446 (1): 68-79.                      

???pagination.result.page??? 1 2 ???pagination.result.next???