Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (24) GO Terms (17) Nucleotides (235) Proteins (49) Interactants (149) Wiki
XB-GENEPAGE-480874

Papers associated with sin3a

Search for sin3a morpholinos using Textpresso

Limit to papers also referencing gene:
1 paper(s) referencing morpholinos

Results 1 - 24 of 24 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription., Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP., Nat Genet. June 1, 1998; 19 (2): 187-91.


A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase., Wade PA, Jones PL, Vermaak D, Wolffe AP., Curr Biol. July 2, 1998; 8 (14): 843-6.


Functional analysis of the SIN3-histone deacetylase RPD3-RbAp48-histone H4 connection in the Xenopus oocyte., Vermaak D, Wade PA, Jones PL, Shi YB, Wolffe AP., Mol Cell Biol. September 1, 1999; 19 (9): 5847-60.


Targeting of N-CoR and histone deacetylase 3 by the oncoprotein v-erbA yields a chromatin infrastructure-dependent transcriptional repression pathway., Urnov FD, Yee J, Sachs L, Collingwood TN, Bauer A, Beug H, Shi YB, Shi YB, Wolffe AP., EMBO J. August 1, 2000; 19 (15): 4074-90.


Multiple stage-dependent roles for histone deacetylases during amphibian embryogenesis: implications for the involvement of extracellular matrix remodeling., Damjanovski S, Sachs LM, Shi YB, Shi YB., Int J Dev Biol. October 1, 2000; 44 (7): 769-76.                    


Purification of the MeCP2/histone deacetylase complex from Xenopus laevis., Jones PL, Wade PA, Wolffe AP., Methods Mol Biol. January 1, 2001; 181 297-307.


Multiple N-CoR complexes contain distinct histone deacetylases., Jones PL, Sachs LM, Rouse N, Wade PA, Shi YB, Shi YB., J Biol Chem. March 23, 2001; 276 (12): 8807-11.


An essential role of histone deacetylases in postembryonic organ transformations in Xenopus laevis., Sachs LM, Amano T, Shi YB., Int J Mol Med. December 1, 2001; 8 (6): 595-601.


Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression., Li J, Lin Q, Wang W, Wade P, Wong J., Genes Dev. March 15, 2002; 16 (6): 687-92.


A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos., Stancheva I, Collins AL, Van den Veyver IB, Zoghbi H, Meehan RR., Mol Cell. August 1, 2003; 12 (2): 425-35.                          


Methylation gets SMRT. Functional insights into Rett syndrome., Vetter ML., Dev Cell. September 1, 2003; 5 (3): 359-60.


Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery., Geiman TM, Sankpal UT, Robertson AK, Chen Y, Mazumdar M, Heale JT, Schmiesing JA, Kim W, Yokomori K, Zhao Y, Robertson KD., Nucleic Acids Res. January 1, 2004; 32 (9): 2716-29.


In vitro targeting reveals intrinsic histone tail specificity of the Sin3/histone deacetylase and N-CoR/SMRT corepressor complexes., Vermeulen M, Carrozza MJ, Lasonder E, Workman JL, Logie C, Stunnenberg HG., Mol Cell Biol. March 1, 2004; 24 (6): 2364-72.


MeCP2 behaves as an elongated monomer that does not stably associate with the Sin3a chromatin remodeling complex., Klose RJ, Bird AP., J Biol Chem. November 5, 2004; 279 (45): 46490-6.


Developmental roles of the Mi-2/NURD-associated protein p66 in Drosophila., Kon C, Cadigan KM, da Silva SL, Nusse R., Genetics. April 1, 2005; 169 (4): 2087-100.


A feed-forward repression mechanism anchors the Sin3/histone deacetylase and N-CoR/SMRT corepressors on chromatin., Vermeulen M, Walter W, Le Guezennec X, Kim J, Edayathumangalam RS, Lasonder E, Luger K, Roeder RG, Logie C, Berger SL, Stunnenberg HG., Mol Cell Biol. July 1, 2006; 26 (14): 5226-36.


FoxN3 is required for craniofacial and eye development of Xenopus laevis., Schuff M, Rössner A, Wacker SA, Donow C, Gessert S, Knöchel W., Dev Dyn. January 1, 2007; 236 (1): 226-39.                            


Maternal Tgif1 regulates nodal gene expression in Xenopus., Kerr TC, Cuykendall TN, Luettjohann LC, Houston DW., Dev Dyn. October 1, 2008; 237 (10): 2862-73.    


Repatterning in amphibian limb regeneration: A model for study of genetic and epigenetic control of organ regeneration., Yakushiji N, Yokoyama H, Tamura K., Semin Cell Dev Biol. July 1, 2009; 20 (5): 565-74.          


HDAC activity is required during Xenopus tail regeneration., Tseng AS, Carneiro K, Lemire JM, Levin M., PLoS One. January 1, 2011; 6 (10): e26382.              


Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning., Kozmikova I, Smolikova J, Vlcek C, Kozmik Z., PLoS One. February 3, 2011; 6 (2): e14650.                  


Nucleosome contact triggers conformational changes of Rpd3S driving high-affinity H3K36me nucleosome engagement., Ruan C, Lee CH, Lee CH, Cui H, Li S, Li B., Cell Rep. January 13, 2015; 10 (2): 204-15.


Identification of REST targets in the Xenopus tropicalis genome., Saritas-Yildirim B, Childers CP, Elsik CG, Silva EM., BMC Genomics. April 2, 2015; 16 380.                                          


FoxN3 is necessary for the development of the interatrial septum, the ventricular trabeculae and the muscles at the head/trunk interface in the African clawed frog, Xenopus laevis (Lissamphibia: Anura: Pipidae)., Naumann B, Schmidt J, Olsson L., Dev Dyn. January 1, 2019; 248 (5): 323-336.          

Page(s): 1