Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (51) GO Terms (20) Nucleotides (238) Proteins (42) Interactants (235) Wiki
XB-GENEPAGE-482035

Papers associated with srf

Search for srf morpholinos using Textpresso

Limit to papers also referencing gene:
9 paper(s) referencing morpholinos

Results 1 - 50 of 51 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

The Actin-Family Protein Arp4 Is a Novel Suppressor for the Formation and Functions of Nuclear F-Actin., Yamazaki S, Gerhold C, Yamamoto K, Ueno Y, Grosse R, Miyamoto K, Harata M., Cells. March 19, 2020; 9 (3):           


Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm., Reich S, Weinstein DC., Genes (Basel). January 1, 2019; 10 (11):         


Roles of Xenopus chemokine ligand CXCLh (XCXCLh) in early embryogenesis., Goto T, Ito Y, Michiue T., Dev Growth Differ. May 1, 2018; 60 (4): 226-238.              


Overexpression of p49/STRAP alters cellular cytoskeletal structure and gross anatomy in mice., Zhang X, Azhar G, Rogers SC, Foster SR, Luo S, Wei JY., BMC Cell Biol. September 2, 2014; 15 32.              


GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure., Itoh K, Ossipova O, Sokol SY., J Cell Sci. June 1, 2014; 127 (Pt 11): 2542-53.              


Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins., Miyamoto K, Gurdon JB., Cell Mol Life Sci. September 1, 2013; 70 (18): 3289-302.        


VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus., Ciau-Uitz A, Pinheiro P, Kirmizitas A, Zuo J, Patient R., Development. June 1, 2013; 140 (12): 2632-42.                                                                                                                            


RhoGAP control of pancreas development: putting cells in the right place at the right time., Zygmunt T, Spagnoli FM., Small GTPases. April 1, 2013; 4 (2): 127-31.


Rho signalling restriction by the RhoGAP Stard13 integrates growth and morphogenesis in the pancreas., Petzold KM, Naumann H, Spagnoli FM., Development. January 1, 2013; 140 (1): 126-35.


Dissociation of cardiogenic and postnatal myocardial activities of GATA4., Gallagher JM, Komati H, Roy E, Nemer M, Latinkić BV., Mol Cell Biol. June 1, 2012; 32 (12): 2214-23.


WD repeat-containing protein 5, a ubiquitously expressed histone methyltransferase adaptor protein, regulates smooth muscle cell-selective gene activation through interaction with pituitary homeobox 2., Gan Q, Thiébaud P, Thézé N, Jin L, Xu G, Grant P, Owens GK., J Biol Chem. June 17, 2011; 286 (24): 21853-64.  


Downstream of FGF during mesoderm formation in Xenopus: the roles of Elk-1 and Egr-1., Nentwich O, Dingwell KS, Nordheim A, Smith JC., Dev Biol. December 15, 2009; 336 (2): 313-26.          


Effects of TCDD on spermatogenesis related factor-2 (SRF-2): gene expression in Xenopus., Rossi F, Bernardini G, Bonfanti P, Colombo A, Prati M, Gornati R., Toxicol Lett. December 15, 2009; 191 (2-3): 189-94.


Induction and modulation of smooth muscle differentiation in Xenopus embryonic cells., Barillot W, Tréguer K, Faucheux C, Fédou S, Thézé N, Thiébaud P., Dev Dyn. November 1, 2008; 237 (11): 3373-86.  


The myocardin-related transcription factor, MASTR, cooperates with MyoD to activate skeletal muscle gene expression., Meadows SM, Warkman AS, Salanga MC, Small EM, Krieg PA., Proc Natl Acad Sci U S A. February 5, 2008; 105 (5): 1545-50.        


Negative regulation of Activin/Nodal signaling by SRF during Xenopus gastrulation., Yun CH, Choi SC, Park E, Kim SJ, Chung AS, Lee HK, Lee HJ, Han JK., Development. February 1, 2007; 134 (4): 769-77.              


Myoskeletin, a factor related to Myocardin, is expressed in somites and required for hypaxial muscle formation in Xenopus., Zhao H, Rebbert ML, Dawid IB., Int J Dev Biol. January 1, 2007; 51 (4): 315-20.              


Xenopus embryos lacking specific isoforms of the corepressor SMRT develop abnormal heads., Malartre M, Short S, Sharpe C., Dev Biol. April 15, 2006; 292 (2): 333-43.                    


Myocardin is sufficient and necessary for cardiac gene expression in Xenopus., Small EM, Warkman AS, Wang DZ, Sutherland LB, Olson EN, Krieg PA., Development. March 1, 2005; 132 (5): 987-97.            


Functional role of a novel ternary complex comprising SRF and CREB in expression of Krox-20 in early embryos of Xenopus laevis., Watanabe T, Hongo I, Kidokoro Y, Okamoto H., Dev Biol. January 15, 2005; 277 (2): 508-21.                


Identification of positive and negative regulatory regions controlling expression of the Xenopus laevis betaTrCP gene., Ballarino M, Fruscalzo A, Marchioni M, Carnevali F., Gene. July 21, 2004; 336 (2): 275-85.


Transcriptional regulation of the cardiac-specific MLC2 gene during Xenopus embryonic development., Latinkic BV, Cooper B, Smith S, Kotecha S, Towers N, Sparrow D, Mohun TJ., Development. February 1, 2004; 131 (3): 669-79.                    


Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF., Small EM, Krieg PA., Dev Biol. September 1, 2003; 261 (1): 116-31.          


Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor., Posern G, Sotiropoulos A, Treisman R., Mol Biol Cell. December 1, 2002; 13 (12): 4167-78.


Potentiation of serum response factor activity by a family of myocardin-related transcription factors., Wang DZ, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, Richardson JA, Nordheim A, Olson EN., Proc Natl Acad Sci U S A. November 12, 2002; 99 (23): 14855-60.


Modulation of cardiac growth and development by HOP, an unusual homeodomain protein., Shin CH, Liu ZP, Passier R, Zhang CL, Wang DZ, Harris TM, Yamagishi H, Richardson JA, Childs G, Olson EN., Cell. September 20, 2002; 110 (6): 725-35.


Hop is an unusual homeobox gene that modulates cardiac development., Chen F, Kook H, Milewski R, Gitler AD, Lu MM, Li J, Nazarian R, Schnepp R, Jen K, Biben C, Runke G, Mackay JP, Novotny J, Schwartz RJ, Harvey RP, Mullins MC, Epstein JA., Cell. September 20, 2002; 110 (6): 713-23.


Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity., Sepulveda JL, Vlahopoulos S, Iyer D, Belaguli N, Schwartz RJ., J Biol Chem. July 12, 2002; 277 (28): 25775-82.


Differential regulation of the cardiac sodium calcium exchanger promoter in adult and neonatal cardiomyocytes by Nkx2.5 and serum response factor., Müller JG, Thompson JT, Edmonson AM, Rackley MS, Kasahara H, Izumo S, McQuinn TC, Menick DR, O'Brien TX., J Mol Cell Cardiol. July 1, 2002; 34 (7): 807-21.


Distinct enhancers regulate skeletal and cardiac muscle-specific expression programs of the cardiac alpha-actin gene in Xenopus embryos., Latinkić BV, Cooper B, Towers N, Sparrow D, Kotecha S, Mohun TJ., Dev Biol. May 1, 2002; 245 (1): 57-70.          


Regulation of cardiac growth and development by SRF and its cofactors., Wang D, Passier R, Liu ZP, Shin CH, Wang Z, Li S, Sutherland LB, Small E, Krieg PA, Olson EN., Cold Spring Harb Symp Quant Biol. January 1, 2002; 67 97-105.


Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor., Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN., Cell. June 29, 2001; 105 (7): 851-62.  


Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative., Barron M, Gao M, Lough J., Dev Dyn. June 1, 2000; 218 (2): 383-93.


Transient cardiac expression of the tinman-family homeobox gene, XNkx2-10., Newman CS, Reecy J, Grow MW, Ni K, Boettger T, Kessel M, Schwartz RJ, Krieg PA., Mech Dev. March 1, 2000; 91 (1-2): 369-73.  


Characterization of the Ets-type protein ER81 in Xenopus embryos., Chen Y, Chen Y, Hollemann T, Grunz H, Pieler T., Mech Dev. January 1, 1999; 80 (1): 67-76.                    


The Spemann organizer-expressed zinc finger gene Xegr-1 responds to the MAP kinase/Ets-SRF signal transduction pathway., Panitz F, Krain B, Hollemann T, Nordheim A, Pieler T., EMBO J. August 3, 1998; 17 (15): 4414-25.


GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression., Sepulveda JL, Belaguli N, Nigam V, Chen CY, Nemer M, Schwartz RJ., Mol Cell Biol. June 1, 1998; 18 (6): 3405-15.


Organization and myogenic restricted expression of the murine serum response factor gene. A role for autoregulation., Belaguli NS, Schildmeyer LA, Schwartz RJ., J Biol Chem. July 18, 1997; 272 (29): 18222-31.


Competition between negative acting YY1 versus positive acting serum response factor and tinman homologue Nkx-2.5 regulates cardiac alpha-actin promoter activity., Chen CY, Schwartz RJ., Mol Endocrinol. June 1, 1997; 11 (6): 812-22.


Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription., Chen CY, Schwartz RJ., Mol Cell Biol. November 1, 1996; 16 (11): 6372-84.


Activation of the cardiac alpha-actin promoter depends upon serum response factor, Tinman homologue, Nkx-2.5, and intact serum response elements., Chen CY, Croissant J, Majesky M, Topouzis S, McQuinn T, Frankovsky MJ, Schwartz RJ., Dev Genet. January 1, 1996; 19 (2): 119-30.


Activation of smooth muscle alpha-actin promoter in ras-transformed cells by treatments with antimitotic agents: correlation with stimulation of SRF:SRE mediated gene transcription., Kumar CC, Kim JH, Bushel P, Armstrong L, Catino JJ., J Biochem. December 1, 1995; 118 (6): 1285-92.


Activation of Xenopus MyoD transcription by members of the MEF2 protein family., Wong MW, Pisegna M, Lu MF, Leibham D, Perry M., Dev Biol. December 1, 1994; 166 (2): 683-95.              


A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage., Breitbart RE, Liang CS, Smoot LB, Laheru DA, Mahdavi V, Nadal-Ginard B., Development. August 1, 1993; 118 (4): 1095-106.


Determination of the sequence requirements for the expression of a Xenopus borealis embryonic/larval skeletal actin gene., Lakin ND, Boardman M, Woodland HR., Eur J Biochem. June 1, 1993; 214 (2): 425-35.


Muscle-specific expression of SRF-related genes in the early embryo of Xenopus laevis., Chambers AE, Kotecha S, Towers N, Mohun TJ., EMBO J. December 1, 1992; 11 (13): 4981-91.


Functional antagonism between YY1 and the serum response factor., Gualberto A, LePage D, Pons G, Mader SL, Park K, Atchison ML, Walsh K., Mol Cell Biol. September 1, 1992; 12 (9): 4209-14.


A family of muscle gene promoter element (CArG) binding activities in Xenopus embryos: CArG/SRE discrimination and distribution during myogenesis., Taylor MV., Nucleic Acids Res. May 25, 1991; 19 (10): 2669-75.


Expression of genes encoding the transcription factor SRF during early development of Xenopus laevis: identification of a CArG box-binding activity as SRF., Mohun TJ, Chambers AE, Towers N, Taylor MV., EMBO J. April 1, 1991; 10 (4): 933-40.


Muscle-specific (CArG) and serum-responsive (SRE) promoter elements are functionally interchangeable in Xenopus embryos and mouse fibroblasts., Taylor M, Treisman R, Garrett N, Mohun T., Development. May 1, 1989; 106 (1): 67-78.

Page(s): 1 2 Next

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556