Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (107) GO Terms (2) Nucleotides (119) Proteins (49) Interactants (281) Wiki
XB-GENEPAGE-482865

Papers associated with prl.1



???displayGene.coCitedPapers???
2 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Metamorphic gene regulation programs in Xenopus tropicalis tadpole brain., Raj S, Sifuentes CJ, Kyono Y, Denver RJ., PLoS One. January 1, 2023; 18 (6): e0287858.                


Mcrs1 interacts with Six1 to influence early craniofacial and otic development., Neilson KM, Keer S, Bousquet N, Macrorie O, Majumdar HD, Kenyon KL, Alfandari D, Alfandari D, Moody SA., Dev Biol. November 1, 2020; 467 (1-2): 39-50.                  


Some aspects of the hypothalamic and pituitary development, metamorphosis, and reproductive behavior as studied in amphibians., Kikuyama S, Okada R, Hasunuma I, Nakada T., Gen Comp Endocrinol. December 1, 2019; 284 113212.


Adaptive correction of craniofacial defects in pre-metamorphic Xenopus laevis tadpoles involves thyroid hormone-independent tissue remodeling., Pinet K, Deolankar M, Leung B, McLaughlin KA., Development. July 22, 2019; 146 (14):                               


A novel type of prolactin expressed in the bullfrog pituitary specifically during the larval period., Okada R, Suzuki M, Ito N, Hyodo S, Kikuyama S., Gen Comp Endocrinol. May 15, 2019; 276 77-85.


Developmental profiles of progesterone receptor transcripts and molecular responses to gestagen exposure during Silurana tropicalis early development., Thomson P, Langlois VS., Gen Comp Endocrinol. September 1, 2018; 265 4-14.          


Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development., Seigfried FA, Dietmann P, Kühl M, Kühl SJ., Gene Expr Patterns. June 1, 2018; 28 54-61.                                      


Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a., Khedgikar V, Abbruzzese G, Mathavan K, Szydlo H, Cousin H, Alfandari D, Alfandari D., Elife. August 22, 2017; 6                                                             


Understanding How the Subcommissural Organ and Other Periventricular Secretory Structures Contribute via the Cerebrospinal Fluid to Neurogenesis., Guerra MM, González C, Caprile T, Jara M, Vío K, Muñoz RI, Rodríguez S, Rodríguez EM., Front Cell Neurosci. September 23, 2015; 9 480.                


Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly., Soto X, Li J, Lea R, Dubaissi E, Papalopulu N, Amaya E., Proc Natl Acad Sci U S A. July 2, 2013; 110 (27): 11029-34.                                      


Identification of the receptors for prolactin-releasing peptide (PrRP) and Carassius RFamide peptide (C-RFa) in chickens., Wang Y, Wang CY, Wu Y, Huang G, Li J, Leung FC., Endocrinology. April 1, 2012; 153 (4): 1861-74.


Assessment of tools for marker-assisted selection in a marine commercial species: significant association between MSTN-1 gene polymorphism and growth traits., Sánchez-Ramos I, Cross I, Mácha J, Martínez-Rodríguez G, Krylov V, Rebordinos L., ScientificWorldJournal. January 1, 2012; 2012 369802.      


The synthetic gestagen levonorgestrel impairs metamorphosis in Xenopus laevis by disruption of the thyroid system., Lorenz C, Contardo-Jara V, Pflugmacher S, Wiegand C, Nützmann G, Lutz I, Kloas W., Toxicol Sci. September 1, 2011; 123 (1): 94-102.


Isolation and characterisation of prolactin-releasing peptide in chicks and its effect on prolactin release and feeding behaviour., Tachibana T, Moriyama S, Takahashi A, Tsukada A, Oda A, Takeuchi S, Sakamoto T., J Neuroendocrinol. January 1, 2011; 23 (1): 74-81.


Human kisspeptins activate neuropeptide FF2 receptor., Lyubimov Y, Engstrom M, Wurster S, Savola JM, Korpi ER, Panula P., Neuroscience. September 29, 2010; 170 (1): 117-22.


A novel prolactin-like protein (PRL-L) gene in chickens and zebrafish: cloning and characterization of its tissue expression., Wanga Y, Li J, Yan Kwok AH, Ge W, Leung FC., Gen Comp Endocrinol. March 1, 2010; 166 (1): 200-10.


Gene switching at Xenopus laevis metamorphosis., Mukhi S, Cai L, Brown DD., Dev Biol. February 15, 2010; 338 (2): 117-26.                


Corticosteroids disrupt amphibian metamorphosis by complex modes of action including increased prolactin expression., Lorenz C, Opitz R, Lutz I, Kloas W., Comp Biochem Physiol C Toxicol Pharmacol. August 1, 2009; 150 (2): 314-21.


Teratogenic effects of chronic treatment with corticosterone on tadpoles of Xenopus laevis., Lorenz C, Opitz R, Lutz I, Kloas W., Ann N Y Acad Sci. April 1, 2009; 1163 454-6.


Differential distribution of orexin-A-like and orexin receptor 1 (OX1R)-like immunoreactivities in the Xenopus pituitary., Suzuki H, Takemoto Y, Yamamoto T., Tissue Cell. December 1, 2007; 39 (6): 423-30.


Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm., Carmona-Fontaine C, Acuña G, Ellwanger K, Niehrs C, Mayor R., Dev Biol. September 15, 2007; 309 (2): 208-21.              


Xenopus fibrillin regulates directed convergence and extension., Skoglund P, Keller R., Dev Biol. January 15, 2007; 301 (2): 404-16.              


Molecular cloning and functional characterization of a prolactin-releasing peptide homolog from Xenopus laevis., Sakamoto T, Oda A, Yamamoto K, Kaneko M, Kikuyama S, Nishikawa A, Takahashi A, Kawauchi H, Tsutsui K, Fujimoto M., Peptides. December 1, 2006; 27 (12): 3347-51.


The pituitary-specific transcription factor, Pit-1, can direct changes in the chromatin structure of the prolactin promoter., Kievit P, Maurer RA., Mol Endocrinol. January 1, 2005; 19 (1): 138-47.


Activity and expression of Xenopus laevis matrix metalloproteinases: identification of a novel role for the hormone prolactin in regulating collagenolysis in both amphibians and mammals., Jung JC, West-Mays JA, Stramer BM, Byrne MH, Scott S, Mody MK, Sadow PM, Krane SM, Fini ME., J Cell Physiol. October 1, 2004; 201 (1): 155-64.


Differential distribution of melatonin receptors in the pituitary gland of Xenopus laevis., Wiechmann AF, Vrieze MJ, Wirsig-Wiechmann CR., Anat Embryol (Berl). March 1, 2003; 206 (4): 291-9.


Tissue-specific regulation of type III iodothyronine 5-deiodinase gene expression mediates the effects of prolactin and growth hormone in Xenopus metamorphosis., Shintani N, Nohira T, Hikosaka A, Kawahara A., Dev Growth Differ. August 1, 2002; 44 (4): 327-35.


Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway., Choi SC, Han JK., Dev Biol. April 15, 2002; 244 (2): 342-57.                  


Environmental estrogens and reproductive biology in amphibians., Mosconi G, Carnevali O, Franzoni MF, Cottone E, Lutz I, Kloas W, Yamamoto K, Kikuyama S, Polzonetti-Magni AM., Gen Comp Endocrinol. April 1, 2002; 126 (2): 125-9.


Relationships between CB1 cannabinoid receptors and pituitary endocrine cells in Xenopus laevis: an immunohistochemical study., Cesa R, Guastalla A, Cottone E, Mackie K, Beltramo M, Franzoni MF., Gen Comp Endocrinol. January 1, 2002; 125 (1): 17-24.    


Identification of G protein-coupled, inward rectifier potassium channel gene products from the rat anterior pituitary gland., Gregerson KA, Flagg TP, O'Neill TJ, Anderson M, Lauring O, Horel JS, Welling PA., Endocrinology. July 1, 2001; 142 (7): 2820-32.


Overexpression of the Xenopus tight-junction protein claudin causes randomization of the left-right body axis., Brizuela BJ, Wessely O, De Robertis EM., Dev Biol. February 15, 2001; 230 (2): 217-29.                


Pituitary involvement in T cell renewal during development and metamorphosis of Xenopus laevis., Rollins-Smith LA, Davis AT, Reinert LK., Brain Behav Immun. September 1, 2000; 14 (3): 185-97.


Insulin-like growth factor I in the anterior pituitary of the clawed frog Xenopus laevis: immunocytochemical and autoradiographic indication for a paracrine action and corelease with prolactin., David I, Bosshard R, Kloas W, Reinecke M., J Neuroendocrinol. May 1, 2000; 12 (5): 415-20.


Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus., Kühl M, Sheldahl LC, Malbon CC, Moon RT., J Biol Chem. April 28, 2000; 275 (17): 12701-11.            


Estrogen receptor alpha interaction with estrogen response element half-sites from the rat prolactin gene., Anderson I, Gorski J., Biochemistry. April 4, 2000; 39 (13): 3842-7.


Cloning of a cDNA for Xenopus prolactin receptor and its metamorphic expression profile., Yamamoto T, Nakayama Y, Tajima T, Abe S, Kawahara A., Dev Growth Differ. April 1, 2000; 42 (2): 167-74.          


Prolactin is not a juvenile hormone in Xenopus laevis metamorphosis., Huang H, Brown DD., Proc Natl Acad Sci U S A. January 4, 2000; 97 (1): 195-9.


Autoinduction of nuclear hormone receptors during metamorphosis and its significance., Tata JR., Insect Biochem Mol Biol. January 1, 2000; 30 (8-9): 645-51.


Production of a recombinant newt growth hormone and its application for the development of a radioimmunoassay., Yamamoto K, Takahashi N, Nakai T, Miura S, Shioda A, Iwata T, Kouki T, Kobayashi T, Kikuyama S., Gen Comp Endocrinol. January 1, 2000; 117 (1): 103-16.


Prolactin opens the sensitive period for androgen regulation of a larynx-specific myosin heavy chain gene., Edwards CJ, Yamamoto K, Kikuyama S, Kelley DB., J Neurobiol. December 1, 1999; 41 (4): 443-51.


A role for xGCNF in midbrain-hindbrain patterning in Xenopus laevis., Song K, Takemaru KI, Moon RT., Dev Biol. September 1, 1999; 213 (1): 170-9.            


Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner., Sheldahl LC, Park M, Malbon CC, Moon RT., Curr Biol. July 1, 1999; 9 (13): 695-8.        


The lymnaea cardioexcitatory peptide (LyCEP) receptor: a G-protein-coupled receptor for a novel member of the RFamide neuropeptide family., Tensen CP, Cox KJ, Smit AB, van der Schors RC, Meyerhof W, Richter D, Planta RJ, Hermann PM, van Minnen J, Geraerts WP, Knol JC, Burke JF, Vreugdenhil E, van Heerikhuizen H., J Neurosci. December 1, 1998; 18 (23): 9812-21.


The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation., Kim SH, Yamamoto A, Bouwmeester T, Agius E, Robertis EM., Development. December 1, 1998; 125 (23): 4681-90.                      


Melatonin accelerates metamorphosis in Xenopus laevis., Rose MF, Rose SR., J Pineal Res. March 1, 1998; 24 (2): 90-5.


Patterning of the embryo along the anterior-posterior axis: the role of the caudal genes., Epstein M, Pillemer G, Yelin R, Yisraeli JK, Fainsod A., Development. October 1, 1997; 124 (19): 3805-14.                


Hormonal control of the in vitro uptake of [35S]sulfate by cartilage of Xenopus laevis tadpoles., Schneider A, Hanke W., Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. July 1, 1997; 117 (3): 317-22.


Analysis of the transmembrane topology and membrane assembly of the GAT-1 gamma-aminobutyric acid transporter., Clark JA., J Biol Chem. June 6, 1997; 272 (23): 14695-704.


Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8., Wang S, Krinks M, Lin K, Luyten FP, Moos M., Cell. March 21, 1997; 88 (6): 757-66.              

???pagination.result.page??? 1 2 3 ???pagination.result.next???