Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (55) GO Terms (14) Nucleotides (198) Proteins (34) Interactants (1186) Wiki
XB-GENEPAGE-483305

Papers associated with cdx2

Search for cdx2 morpholinos using Textpresso

Limit to papers also referencing gene:
10 paper(s) referencing morpholinos

Results 1 - 50 of 55 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network., Mukherjee S, Chaturvedi P, Rankin SA, Rankin SA, Fish MB, Wlizla M, Paraiso KD, MacDonald M, Chen X, Weirauch MT, Blitz IL, Cho KW, Zorn AM., Elife. September 7, 2020; 9               


Chromatin accessibility and histone acetylation in the regulation of competence in early development., Esmaeili M, Blythe SA, Tobias JW, Zhang K, Yang J, Klein PS., Dev Biol. June 1, 2020; 462 (1): 20-35.


Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos., Lichtig H, Artamonov A, Polevoy H, Reid CD, Bielas SL, Frank D., Front Physiol. January 1, 2020; 11 75.          


Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression., Kumar S, Kumar S, Umair Z, Kumar V, Lee U, Choi SC, Kim J., BMB Rep. June 1, 2019; 52 (6): 403-408.        


Morpholinos Do Not Elicit an Innate Immune Response during Early Xenopus Embryogenesis., Paraiso KD, Blitz IL, Zhou JJ, Cho KWY., Dev Cell. January 1, 2019; 49 (4): 643-650.e3.        


Integration of Wnt and FGF signaling in the Xenopus gastrula at TCF and Ets binding sites shows the importance of short-range repression by TCF in patterning the marginal zone., Kjolby RAS, Truchado-Garcia M, Iruvanti S, Harland RM., Development. January 1, 2019; 146 (15):                           


Ventx1.1 as a Direct Repressor of Early Neural Gene zic3 in Xenopus laevis., Umair Z, Kumar S, Kim DH, Rafiq K, Kumar V, Kim S, Park JB, Lee JY, Lee U, Kim J., Mol Cells. December 31, 2018; 41 (12): 1061-1071.          


Increasing complexity: Mechanical guidance and feedback loops as a basis for self-organization in morphogenesis., Bredov D, Volodyaev I., Biosystems. November 1, 2018; 173 133-156.


Coordinated regulation of the dorsal-ventral and anterior-posterior patterning of Xenopus embryos by the BTB/POZ zinc finger protein Zbtb14., Takebayashi-Suzuki K, Konishi H, Miyamoto T, Nagata T, Uchida M, Suzuki A, Suzuki A., Dev Growth Differ. April 1, 2018; 60 (3): 158-173.          


Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis., Rankin SA, Rankin SA, McCracken KW, Luedeke DM, Han L, Wells JM, Shannon JM, Zorn AM., Dev Biol. January 1, 2018; 434 (1): 121-132.          


Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus., Gentsch GE, Spruce T, Monteiro RS, Owens NDL, Martin SR, Smith JC., Dev Cell. January 1, 2018; 44 (5): 597-610.e10.                            


The Xenopus animal cap transcriptome: building a mucociliary epithelium., Angerilli A, Smialowski P, Rupp RA., Nucleic Acids Res. January 1, 2018; 46 (17): 8772-8787.                          


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM, Monsoro-Burq AH., PLoS Biol. October 1, 2017; 15 (10): e2004045.                                              


Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula., Ding Y, Colozza G, Zhang K, Moriyama Y, Ploper D, Sosa EA, Benitez MDJ, De Robertis EM., Dev Biol. January 1, 2017; 426 (2): 176-187.                                  


Genome-wide identification of Wnt/β-catenin transcriptional targets during Xenopus gastrulation., Kjolby RAS, Harland RM., Dev Biol. January 1, 2017; 426 (2): 165-175.                                    


Eomesodermin-At Dawn of Cell Fate Decisions During Early Embryogenesis., Probst S, Arnold SJ., Curr Top Dev Biol. January 1, 2017; 122 93-115.


Genomic integration of Wnt/β-catenin and BMP/Smad1 signaling coordinates foregut and hindgut transcriptional programs., Stevens ML, Chaturvedi P, Rankin SA, Rankin SA, Macdonald M, Jagannathan S, Yukawa M, Barski A, Zorn AM., Development. January 1, 2017; 144 (7): 1283-1295.                            


Evo-engineering and the cellular and molecular origins of the vertebrate spinal cord., Steventon B, Martinez Arias A., Dev Biol. January 1, 2017; 432 (1): 3-13.


Morphological, biochemical, transcriptional and epigenetic responses to fasting and refeeding in intestine of Xenopus laevis., Tamaoki K, Okada R, Ishihara A, Shiojiri N, Mochizuki K, Goda T, Yamauchi K., Cell Biosci. January 1, 2016; 6 2.            


Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules., Nakamura Y, de Paiva Alves E, Veenstra GJ, Hoppler S., Development. January 1, 2016; 143 (11): 1914-25.            


Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution., Marlétaz F, Maeso I, Faas L, Isaacs HV, Holland PW., BMC Biol. August 1, 2015; 13 56.          


A role for BMP-induced homeobox gene MIXL1 in acute myelogenous leukemia and identification of type I BMP receptor as a potential target for therapy., Raymond A, Liu B, Liang H, Wei C, Guindani M, Lu Y, Liang S, St John LS, Molldrem J, Nagarajan L., Oncotarget. December 30, 2014; 5 (24): 12675-93.              


Getting to know your neighbor: cell polarization in early embryos., Nance J., J Cell Biol. September 29, 2014; 206 (7): 823-32.          


Gene regulatory networks governing lung specification., Rankin SA, Rankin SA, Zorn AM., J Cell Biochem. August 1, 2014; 115 (8): 1343-50.


Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus., Young JJ, Kjolby RA, Kong NR, Monica SD, Harland RM., Development. April 1, 2014; 141 (8): 1683-93.                                                                


Molecular insights into the origin of the Hox-TALE patterning system., Hudry B, Thomas-Chollier M, Volovik Y, Duffraisse M, Dard A, Frank D, Technau U, Merabet S., Elife. March 18, 2014; 3 e01939.                                    


A conserved Oct4/POUV-dependent network links adhesion and migration to progenitor maintenance., Livigni A, Peradziryi H, Sharov AA, Chia G, Hammachi F, Migueles RP, Sukparangsi W, Pernagallo S, Bradley M, Nichols J, Ko MSH, Brickman JM., Curr Biol. November 18, 2013; 23 (22): 2233-2244.                                    


Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry., Flachsova M, Sindelka R, Kubista M., Sci Rep. January 1, 2013; 3 2278.      


fus/TLS orchestrates splicing of developmental regulators during gastrulation., Dichmann DS, Harland RM., Genes Dev. June 15, 2012; 26 (12): 1351-63.                        


Homeoprotein hhex-induced conversion of intestinal to ventral pancreatic precursors results in the formation of giant pancreata in Xenopus embryos., Zhao H, Han D, Dawid IB, Pieler T, Chen Y, Chen Y., Proc Natl Acad Sci U S A. May 29, 2012; 109 (22): 8594-9.                              


Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency., Hammachi F, Morrison GM, Sharov AA, Livigni A, Narayan S, Papapetrou EP, O'Malley J, Kaji K, Ko MS, Ptashne M, Brickman JM., Cell Rep. February 23, 2012; 1 (2): 99-109.                          


Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway., Takahashi C, Suzuki T, Nishida E, Kusakabe M., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.                  


Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro., Spence JR, Mayhew CN, Rankin SA, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, Shroyer NF, Wells JM., Nature. February 3, 2011; 470 (7332): 105-9.      


The intestine-specific transcription factor Cdx2 inhibits beta-catenin/TCF transcriptional activity by disrupting the beta-catenin-TCF protein complex., Guo RJ, Funakoshi S, Lee HH, Kong J, Lynch JP., Carcinogenesis. February 1, 2010; 31 (2): 159-66.


Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis., Faas L, Isaacs HV., Dev Dyn. April 1, 2009; 238 (4): 835-52.                                


Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis., Illes JC, Winterbottom E, Isaacs HV., Dev Dyn. January 1, 2009; 238 (1): 194-203.                                


Crossveinless-2 Is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning., Ambrosio AL, Taelman VF, Lee HX, Metzinger CA, Coffinier C, De Robertis EM., Dev Cell. August 1, 2008; 15 (2): 248-60.                            


Evolution of axis specification mechanisms in jawed vertebrates: insights from a chondrichthyan., Coolen M, Sauka-Spengler T, Nicolle D, Le-Mentec C, Lallemand Y, Da Silva C, Plouhinec JL, Robert B, Wincker P, Shi DL, Mazan S., PLoS One. January 1, 2007; 2 (4): e374.              


Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides., Rana AA, Collart C, Gilchrist MJ, Smith JC., PLoS Genet. November 17, 2006; 2 (11): e193.                                    


FGF signal transduction and the regulation of Cdx gene expression., Keenan ID, Sharrard RM, Isaacs HV., Dev Biol. November 15, 2006; 299 (2): 478-88.    


Cdx2 expression regulates trophectoderm lineage specification in mouse embryos., Krtolica A., Regen Med. May 1, 2006; 1 (3): 377-379.


A consensus Oct1 binding site is required for the activity of the Xenopus Cdx4 promoter., Reece-Hoyes JS, Keenan ID, Pownall ME, Isaacs HV., Dev Biol. June 15, 2005; 282 (2): 509-23.              


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA, Voigt J, Gilchrist M, Papalopulu N, Amaya E., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


Cdx1 inhibits human colon cancer cell proliferation by reducing beta-catenin/T-cell factor transcriptional activity., Guo RJ, Huang E, Ezaki T, Patel N, Sinclair K, Wu J, Klein P, Suh ER, Lynch JP., J Biol Chem. August 27, 2004; 279 (35): 36865-75.


Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation., Shiotsugu J, Katsuyama Y, Arima K, Baxter A, Koide T, Song J, Chandraratna RA, Blumberg B., Development. June 1, 2004; 131 (11): 2653-67.              


The role of maternal CREB in early embryogenesis of Xenopus laevis., Sundaram N, Tao Q, Wylie C, Heasman J., Dev Biol. September 15, 2003; 261 (2): 337-52.


Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos., Hino J, Nishimatsu S, Nagai T, Matsuo H, Kangawa K, Nohno T., Dev Biol. August 1, 2003; 260 (1): 138-57.                            


Lefty-dependent inhibition of Nodal- and Wnt-responsive organizer gene expression is essential for normal gastrulation., Branford WW, Yost HJ., Curr Biol. December 23, 2002; 12 (24): 2136-41.              


The competence of marginal zone cells to become Spemann''s organizer is controlled by Xcad2., Levy V, Marom K, Zins S, Koutsia N, Yelin R, Fainsod A., Dev Biol. August 1, 2002; 248 (1): 40-51.              


Gbx2 interacts with Otx2 and patterns the anterior-posterior axis during gastrulation in Xenopus., Tour E, Pillemer G, Gruenbaum Y, Fainsod A., Mech Dev. March 1, 2002; 112 (1-2): 141-51.      

Page(s): 1 2 Next

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556