Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (55) GO Terms (3) Nucleotides (258) Proteins (56) Interactants (422) Wiki
XB-GENEPAGE-486461

Papers associated with slc2a2



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Different mammalian facilitative glucose transporters expressed in Xenopus oocytes., Keller K, Mueckler M., Biomed Biochim Acta. January 1, 1990; 49 (12): 1201-3.


Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins., Burant CF, Bell GI., Biochemistry. October 27, 1992; 31 (42): 10414-20.


Expression of mRNA (D2) encoding a protein involved in amino acid transport in S3 proximal tubule., Kanai Y, Stelzner MG, Lee WS, Wells RG, Brown D, Hediger MA., Am J Physiol. December 1, 1992; 263 (6 Pt 2): F1087-92.


Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors., Colville CA, Seatter MJ, Jess TJ, Gould GW, Thomas HM., Biochem J. March 15, 1993; 290 ( Pt 3) 701-6.


Analysis of the structural requirements of sugar binding to the liver, brain and insulin-responsive glucose transporters expressed in oocytes., Colville CA, Seatter MJ, Gould GW., Biochem J. September 15, 1993; 294 ( Pt 3) 753-60.


Evidence that facilitative glucose transporters may fold as beta-barrels., Fischbarg J, Cheung M, Czegledy F, Li J, Iserovich P, Kuang K, Hubbard J, Garner M, Rosen OM, Golde DW., Proc Natl Acad Sci U S A. December 15, 1993; 90 (24): 11658-62.


A mutation in the Glut2 glucose transporter gene of a diabetic patient abolishes transport activity., Mueckler M, Kruse M, Strube M, Riggs AC, Chiu KC, Permutt MA., J Biol Chem. July 8, 1994; 269 (27): 17765-7.


Functional consequences of proline mutations in the putative transmembrane segments 6 and 10 of the glucose transporter GLUT1., Wellner M, Monden I, Mueckler MM, Keller K., Eur J Biochem. January 15, 1995; 227 (1-2): 454-8.


PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum., Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV., Development. March 1, 1996; 122 (3): 983-95.


Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity., Arbuckle MI, Kane S, Porter LM, Seatter MJ, Gould GW., Biochemistry. December 24, 1996; 35 (51): 16519-27.


Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid., Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M., J Biol Chem. July 25, 1997; 272 (30): 18982-9.


Identification of an amino acid residue that lies between the exofacial vestibule and exofacial substrate-binding site of the Glut1 sugar permeation pathway., Mueckler M, Makepeace C., J Biol Chem. November 28, 1997; 272 (48): 30141-6.


QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site., Seatter MJ, De la Rue SA, Porter LM, Gould GW., Biochemistry. February 3, 1998; 37 (5): 1322-6.


Different functional domains of GLUT2 glucose transporter are required for glucose affinity and substrate specificity., Wu L, Fritz JD, Powers AC., Endocrinology. October 1, 1998; 139 (10): 4205-12.


Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations., Murata H, Hruz PW, Mueckler M., AIDS. April 12, 2002; 16 (6): 859-63.


Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose., Song J, Kwon O, Chen S, Daruwala R, Eck P, Park JB, Levine M., J Biol Chem. May 3, 2002; 277 (18): 15252-60.


GLUT2 is a high affinity glucosamine transporter., Uldry M, Ibberson M, Hosokawa M, Thorens B., FEBS Lett. July 31, 2002; 524 (1-3): 199-203.


Glucose accumulation can account for the initial water flux triggered by Na+/glucose cotransport., Gagnon MP, Bissonnette P, Deslandes LM, Wallendorff B, Lapointe JY., Biophys J. January 1, 2004; 86 (1 Pt 1): 125-33.


Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine., Li Q, Manolescu A, Ritzel M, Yao S, Slugoski M, Young JD, Chen XZ, Cheeseman CI., Am J Physiol Gastrointest Liver Physiol. July 1, 2004; 287 (1): G236-42.


A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes., Proks P, Arnold AL, Bruining J, Girard C, Flanagan SE, Larkin B, Colclough K, Hattersley AT, Ashcroft FM, Ellard S., Hum Mol Genet. June 1, 2006; 15 (11): 1793-800.


Inhibition of the intestinal glucose transporter GLUT2 by flavonoids., Kwon O, Eck P, Chen S, Corpe CP, Lee JH, Kruhlak M, Levine M., FASEB J. February 1, 2007; 21 (2): 366-77.


Water transport by GLUT2 expressed in Xenopus laevis oocytes., Zeuthen T, Zeuthen E, Macaulay N., J Physiol. March 1, 2007; 579 (Pt 2): 345-61.


SMIT2 mediates all myo-inositol uptake in apical membranes of rat small intestine., Aouameur R, Da Cal S, Bissonnette P, Coady MJ, Lapointe JY., Am J Physiol Gastrointest Liver Physiol. December 1, 2007; 293 (6): G1300-7.


SLC2A9 is a high-capacity urate transporter in humans., Caulfield MJ, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, Doblado M, Evans S, Eyheramendy S, Onipinla A, Howard P, Shaw-Hawkins S, Dobson RJ, Wallace C, Newhouse SJ, Brown M, Connell JM, Dominiczak A, Farrall M, Lathrop GM, Samani NJ, Kumari M, Marmot M, Brunner E, Chambers J, Elliott P, Kooner J, Laan M, Org E, Veldre G, Viigimaa M, Cappuccio FP, Ji C, Iacone R, Strazzullo P, Moley KH, Cheeseman C., PLoS Med. October 7, 2008; 5 (10): e197.          


Comparison of effects of green tea catechins on apicomplexan hexose transporters and mammalian orthologues., Slavic K, Derbyshire ET, Naftalin RJ, Krishna S, Staines HM., Mol Biochem Parasitol. November 1, 2009; 168 (1): 113-6.  


Evolutionary structural and functional conservation of an ortholog of the GLUT2 glucose transporter gene (SLC2A2) in zebrafish., Castillo J, Crespo D, Capilla E, Diaz M, Chauvigne F, Cerdà J, Planas JV., Am J Physiol Regul Integr Comp Physiol. November 1, 2009; 297 (5): R1570-81.


The glucose transporter-2 (GLUT2) is a low affinity dehydroascorbic acid transporter., Mardones L, Ormazabal V, Romo X, Jaña C, Peña E, Vergara M, Zúñiga FA, Zúñiga FA., Biochem Biophys Res Commun. June 24, 2011; 410 (1): 7-12.


Arsenic and antimony transporters in eukaryotes., Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R., Int J Mol Sci. January 1, 2012; 13 (3): 3527-3548.      


Fanconi-Bickel syndrome and autosomal recessive proximal tubulopathy with hypercalciuria (ARPTH) are allelic variants caused by GLUT2 mutations., Mannstadt M, Magen D, Segawa H, Stanley T, Sharma A, Sasaki S, Bergwitz C, Mounien L, Boepple P, Thorens B, Zelikovic I, Jüppner H., J Clin Endocrinol Metab. October 1, 2012; 97 (10): E1978-86.


Intestinal dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, GLUT2 and GLUT8., Corpe CP, Eck P, Wang J, Al-Hasani H, Levine M., J Biol Chem. March 29, 2013; 288 (13): 9092-101.            


FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells., Kitaoka S, Morielli AD, Zhao FQ., PLoS One. June 4, 2013; 8 (6): e68475.              


Mutations in SLC2A2 gene reveal hGLUT2 function in pancreatic β cell development., Michau A, Guillemain G, Grosfeld A, Vuillaumier-Barrot S, Grand T, Keck M, L'Hoste S, Chateau D, Serradas P, Teulon J, De Lonlay P, Scharfmann R, Brot-Laroche E, Leturque A, Le Gall M., J Biol Chem. October 25, 2013; 288 (43): 31080-92.


Cloning, characterization, and expression of glucose transporter 2 in the freeze-tolerant wood frog, Rana sylvatica., Rosendale AJ, Philip BN, Lee RE, Costanzo JP., Biochim Biophys Acta. June 1, 2014; 1840 (6): 1701-11.              


Impaired liver function in Xenopus tropicalis exposed to benzo[a]pyrene: transcriptomic and metabolic evidence., Regnault C, Worms IA, Oger-Desfeux C, MelodeLima C, Veyrenc S, Bayle ML, Combourieu B, Bonin A, Renaud J, Raveton M, Reynaud S., BMC Genomics. August 8, 2014; 15 666.          


Distinct action of the α-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion., Lee EY, Kaneko S, Jutabha P, Zhang X, Seino S, Jomori T, Anzai N, Miki T., J Endocrinol. March 1, 2015; 224 (3): 205-14.            


Inhibition of Intestinal α-Glucosidase and Glucose Absorption by Feruloylated Arabinoxylan Mono- and Oligosaccharides from Corn Bran and Wheat Aleurone., Malunga LN, Eck P, Beta T., J Nutr Metab. January 1, 2016; 2016 1932532.            


Xenopus as a model system for studying pancreatic development and diabetes., Kofent J, Spagnoli FM., Semin Cell Dev Biol. March 1, 2016; 51 106-16.  


Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R, Ferran JL, Puelles L, González A., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


Reassessment of GLUT7 and GLUT9 as Putative Fructose and Glucose Transporters., Ebert K, Ludwig M, Geillinger KE, Schoberth GC, Essenwanger J, Stolz J, Daniel H, Witt H., J Membr Biol. April 1, 2017; 250 (2): 171-182.


Genome-wide identification of thyroid hormone receptor targets in the remodeling intestine during Xenopus tropicalis metamorphosis., Fu L, Das B, Matsuura K, Fujimoto K, Heimeier RA, Shi YB, Shi YB., Sci Rep. July 25, 2017; 7 (1): 6414.            


Regulatory remodeling in the allo-tetraploid frog Xenopus laevis., Elurbe DM, Paranjpe SS, Georgiou G, van Kruijsbergen I, Bogdanovic O, Gibeaux R, Heald R, Lister R, Huynen MA, van Heeringen SJ, Veenstra GJC., Genome Biol. October 24, 2017; 18 (1): 198.              


Green and Chamomile Teas, but not Acarbose, Attenuate Glucose and Fructose Transport via Inhibition of GLUT2 and GLUT5., Villa-Rodriguez JA, Aydin E, Gauer JS, Pyner A, Williamson G, Kerimi A., Mol Nutr Food Res. December 1, 2017; 61 (12):


Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids., Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G., Biochem Pharmacol. June 1, 2018; 152 11-20.


Unraveling the Inhibition of Intestinal Glucose Transport by Dietary Phenolics: A Review., Pico J, Martínez MM., Curr Pharm Des. January 1, 2019; 25 (32): 3418-3433.


Nutritional implications of olives and sugar: attenuation of post-prandial glucose spikes in healthy volunteers by inhibition of sucrose hydrolysis and glucose transport by oleuropein., Kerimi A, Nyambe-Silavwe H, Pyner A, Oladele E, Gauer JS, Stevens Y, Williamson G., Eur J Nutr. April 1, 2019; 58 (3): 1315-1330.                    


Effect of the flavonoid hesperidin on glucose and fructose transport, sucrase activity and glycaemic response to orange juice in a crossover trial on healthy volunteers., Kerimi A, Gauer JS, Crabbe S, Cheah JW, Lau J, Walsh R, Cancalon PF, Williamson G., Br J Nutr. April 1, 2019; 121 (7): 782-792.


Functional and structural analysis of rare SLC2A2 variants associated with Fanconi-Bickel syndrome and metabolic traits., Enogieru OJ, Ung PMU, Yee SW, Schlessinger A, Giacomini KM., Hum Mutat. July 1, 2019; 40 (7): 983-995.


The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation., Aztekin C, Hiscock TW, Butler R, De Jesús Andino F, Robert J, Gurdon JB, Jullien J., Development. February 5, 2020; 147 (3):                                     


Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins., Ni D, Ai Z, Munoz-Sandoval D, Suresh R, Ellis PR, Yuqiong C, Sharp PA, Butterworth PJ, Yu Z, Corpe CP., FASEB J. August 1, 2020; 34 (8): 9995-10010.


Modeling endoderm development and disease in Xenopus., Edwards NA, Zorn AM., Curr Top Dev Biol. January 1, 2021; 145 61-90.

???pagination.result.page??? 1 2 ???pagination.result.next???