Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (97) GO Terms (27) Nucleotides (432) Proteins (49) Interactants (1280) Wiki
XB-GENEPAGE-487829

Papers associated with hes4

Search for hes4 morpholinos using Textpresso

Limit to papers also referencing gene:
18 paper(s) referencing morpholinos

Results 1 - 50 of 97 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis., Harata A, Hirakawa M, Sakuma T, Yamamoto T, Hashimoto C., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.                      


Spiral waves and vertebrate embryonic handedness., Durston AJ, Peres J, Cohen MH., J Biosci. June 1, 2018; 43 (2): 375-390.


C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis., Moore KB, Logan MA, Aldiri I, Roberts JM, Steele M, Vetter ML., Dev Biol. January 1, 2018; 437 (1): 27-40.                  


AKT signaling displays multifaceted functions in neural crest development., Sittewelle M, Monsoro-Burq AH., Dev Biol. January 1, 2018; 444 Suppl 1 S144-S155.


A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis., Maharana SK, Schlosser G., BMC Biol. January 1, 2018; 16 (1): 79.                            


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S, Vega-López GA, Palacio MB, Tríbulo C, Aybar MJ, Aybar MJ., Mech Dev. January 1, 2018; 154 219-239.                      


The neural border: Induction, specification and maturation of the territory that generates neural crest cells., Pla P, Monsoro-Burq AH., Dev Biol. January 1, 2018; 444 Suppl 1 S36-S46.    


Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis., Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 301-324.                          


Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis., Hasebe T, Fujimoto K, Kajita M, Fu L, Shi YB, Shi YB, Ishizuya-Oka A., Stem Cells. January 1, 2017; 35 (4): 1028-1039.            


Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes., Riddiford N, Schlosser G., Dev Biol. January 1, 2017; 431 (2): 152-167.                            


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL, Maczkowiak F, Borday C, Pla P, Sittewelle M, Pegoraro C, Monsoro-Burq AH., Development. January 1, 2017; 144 (22): 4183-4194.                                


Hmga2 is required for neural crest cell specification in Xenopus laevis., Macrì S, Simula L, Pellarin I, Pegoraro S, Onorati M, Sgarra R, Manfioletti G, Vignali R., Dev Biol. March 1, 2016; 411 (1): 25-37.                                        


A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes., Oswald F, Rodriguez P, Giaimo BD, Antonello ZA, Mira L, Mittler G, Thiel VN, Collins KJ, Tabaja N, Cizelsky W, Rothe M, Kühl SJ, Kühl SJ, Kühl M, Ferrante F, Hein K, Kovall RA, Dominguez M, Borggrefe T., Nucleic Acids Res. January 1, 2016; 44 (10): 4703-20.                              


Molecular and cellular characterization of urinary bladder-type aquaporin in Xenopus laevis., Shibata Y, Katayama I, Nakakura T, Ogushi Y, Okada R, Tanaka S, Suzuki M., Gen Comp Endocrinol. October 1, 2015; 222 11-9.                


The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling., Wang C, Kam RK, Shi W, Xia Y, Chen X, Cao Y, Sun J, Du Y, Lu G, Chen Z, Chan WY, Chan SO, Deng Y, Zhao H., J Biol Chem. September 4, 2015; 290 (36): 21925-38.                  


Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration., Vega-López GA, Bonano M, Tríbulo C, Fernández JP, Agüero TH, Aybar MJ, Aybar MJ., Dev Dyn. August 1, 2015; 244 (8): 988-1013.                            


Developmental role of plk4 in Xenopus laevis and Danio rerio: implications for Seckel Syndrome., Rapchak CE, Patel N, Hudson J, Crawford M., Biochem Cell Biol. August 1, 2015; 93 (4): 396-404.  


YAP controls retinal stem cell DNA replication timing and genomic stability., Cabochette P, Vega-Lopez G, Bitard J, Parain K, Chemouny R, Masson C, Borday C, Hedderich M, Henningfeld KA, Locker M, Bronchain O, Perron M., Elife. July 9, 2015; 4 e08488.                                    


Local pressure changes in lipid bilayers due to adsorption of melittin and magainin-h2 antimicrobial peptides: results from computer simulations., Goliaei A, Santo KP, Berkowitz ML., J Phys Chem B. November 6, 2014; 118 (44): 12673-9.


Sulfonylureas suppress the stimulatory action of Mg-nucleotides on Kir6.2/SUR1 but not Kir6.2/SUR2A KATP channels: a mechanistic study., Proks P, de Wet H, Ashcroft FM., J Gen Physiol. November 1, 2014; 144 (5): 469-86.                  


A nutrient-sensitive restriction point is active during retinal progenitor cell differentiation., Love NK, Keshavan N, Lewis R, Harris WA, Agathocleous M., Development. February 1, 2014; 141 (3): 697-706.                              


FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos., Murgan S, Castro Colabianchi AM, Monti RJ, Boyadjián López LE, Aguirre CE, Stivala EG, Carrasco AE, López SL., PLoS One. January 1, 2014; 9 (10): e110559.                            


Brief report: Rx1 defines retinal precursor identity by repressing alternative fates through the activation of TLE2 and Hes4., Giannaccini M, Giudetti G, Biasci D, Mariotti S, Martini D, Barsacchi G, Andreazzoli M., Stem Cells. December 1, 2013; 31 (12): 2842-7.


Molecular mechanism of sulphonylurea block of K(ATP) channels carrying mutations that impair ATP inhibition and cause neonatal diabetes., Proks P, de Wet H, Ashcroft FM., Diabetes. November 1, 2013; 62 (11): 3909-19.              


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C, Maczkowiak F, Roche DD, Monsoro-Burq AH., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos., Pegoraro C, Monsoro-Burq AH., Wiley Interdiscip Rev Dev Biol. March 1, 2013; 2 (2): 247-59.      


An intact brachyury function is necessary to prevent spurious axial development in Xenopus laevis., Aguirre CE, Murgan S, Carrasco AE, López SL., PLoS One. January 1, 2013; 8 (1): e54777.                                      


Comparative Functional Analysis of ZFP36 Genes during Xenopus Development., Tréguer K, Faucheux C, Veschambre P, Fédou S, Thézé N, Thiébaud P., PLoS One. January 1, 2013; 8 (1): e54550.                          


Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis., El Yakoubi W, Borday C, Hamdache J, Parain K, Tran HT, Vleminckx K, Vleminckx K, Perron M, Locker M., Stem Cells. December 1, 2012; 30 (12): 2784-95.              


Current perspectives of the signaling pathways directing neural crest induction., Stuhlmiller TJ, García-Castro MI., Cell Mol Life Sci. November 1, 2012; 69 (22): 3715-37.          


Microarray-based identification of Pitx3 targets during Xenopus embryogenesis., Hooker L, Smoczer C, KhosrowShahian F, Wolanski M, Crawford MJ., Dev Dyn. September 1, 2012; 241 (9): 1487-505.                          


Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions., Prasad MS, Sauka-Spengler T, LaBonne C., Dev Biol. June 1, 2012; 366 (1): 10-21.


Early neural crest induction requires an initial inhibition of Wnt signals., Steventon B, Mayor R., Dev Biol. May 1, 2012; 365 (1): 196-207.              


A large scale screen for neural stem cell markers in Xenopus retina., Parain K, Mazurier N, Bronchain O, Borday C, Cabochette P, Chesneau A, Colozza G, El Yakoubi W, Hamdache J, Locker M, Gilchrist MJ, Pollet N, Perron M., Dev Neurobiol. April 1, 2012; 72 (4): 491-506.                                                    


Transcription factors involved in lens development from the preplacodal ectoderm., Ogino H, Ochi H, Reza HM, Yasuda K., Dev Biol. March 15, 2012; 363 (2): 333-47.      


Neural crest specification by noncanonical Wnt signaling and PAR-1., Ossipova O, Sokol SY., Development. December 1, 2011; 138 (24): 5441-50.                        


The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic., Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF., J Exp Bot. August 1, 2011; 62 (12): 4391-8.          


Affinity-based enrichment strategies to assay methyl-CpG binding activity and DNA methylation in early Xenopus embryos., Bogdanović O, Veenstra GJ., BMC Res Notes. May 6, 2011; 4 300.      


Activation of the K(ATP) channel by Mg-nucleotide interaction with SUR1., Proks P, de Wet H, Ashcroft FM., J Gen Physiol. October 1, 2010; 136 (4): 389-405.                    


BCL6 canalizes Notch-dependent transcription, excluding Mastermind-like1 from selected target genes during left-right patterning., Sakano D, Kato A, Parikh N, McKnight K, Terry D, Stefanovic B, Kato Y., Dev Cell. March 16, 2010; 18 (3): 450-62.        


BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus., Wills AE, Choi VM, Bennett MJ, Khokha MK, Harland RM., Dev Biol. January 15, 2010; 337 (2): 335-50.                  


Self-regulation of Stat3 activity coordinates cell-cycle progression and neural crest specification., Nichane M, Ren X, Bellefroid EJ., EMBO J. January 6, 2010; 29 (1): 55-67.


The role of miR-124a in early development of the Xenopus eye., Qiu R, Liu K, Liu Y, Mo W, Flynt AS, Patton JG, Kar A, Wu JY, He R., Mech Dev. October 1, 2009; 126 (10): 804-16.          


Xhairy2 functions in Xenopus lens development by regulating p27(xic1) expression., Murato Y, Hashimoto C., Dev Dyn. September 1, 2009; 238 (9): 2179-92.              


Cell communication with the neural plate is required for induction of neural markers by BMP inhibition: evidence for homeogenetic induction and implications for Xenopus animal cap and chick explant assays., Linker C, De Almeida I, Papanayotou C, Stower M, Sabado V, Ghorani E, Streit A, Mayor R, Stern CD., Dev Biol. March 15, 2009; 327 (2): 478-86.      


Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus., Nichane M, Ren X, Souopgui J, Bellefroid EJ., Dev Biol. October 15, 2008; 322 (2): 368-80.                        


Hairy2-Id3 interactions play an essential role in Xenopus neural crest progenitor specification., Nichane M, de Crozé N, Ren X, Souopgui J, Monsoro-Burq AH, Bellefroid EJ., Dev Biol. October 15, 2008; 322 (2): 355-67.                          


Immunolocalization of a mammalian aquaporin 3 homolog in water-transporting epithelial cells in several organs of the clawed toad Xenopus laevis., Mochida H, Nakakura T, Suzuki M, Hayashi H, Kikuyama S, Tanaka S., Cell Tissue Res. August 1, 2008; 333 (2): 297-309.


Tbx6, Thylacine1, and E47 synergistically activate bowline expression in Xenopus somitogenesis., Hitachi K, Kondow A, Danno H, Inui M, Uchiyama H, Asashima M., Dev Biol. January 15, 2008; 313 (2): 816-28.      


Sulfonylurea receptors type 1 and 2A randomly assemble to form heteromeric KATP channels of mixed subunit composition., Chan KW, Wheeler A, Csanády L., J Gen Physiol. January 1, 2008; 131 (1): 43-58.                    

Page(s): 1 2 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.13.1
Major funding for Xenbase is provided by grant P41 HD064556