Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (24) GO Terms (3) Nucleotides (449) Proteins (54) Interactants (213) Wiki
XB-GENEPAGE-5763129

Papers associated with ocm4.5



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Transcriptome profiling reveals male- and female-specific gene expression pattern and novel gene candidates for the control of sex determination and gonad development in Xenopus laevis., Piprek RP, Damulewicz M, Tassan JP, Kloc M, Kubiak JZ., Dev Genes Evol. May 1, 2019; 229 (2-3): 53-72.        


Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis., Afouda BA, Lynch AT, de Paiva Alves E, Hoppler S., Dev Biol. February 1, 2018; 434 (1): 108-120.                  


High-resolution full-field optical coherence microscopy using a broadband light-emitting diode., Ogien J, Dubois A., Opt Express. May 2, 2016; 24 (9): 9922-31.


Negative modulation of GABAA α5 receptors by RO4938581 attenuates discrete sub-chronic and early postnatal phencyclidine (PCP)-induced cognitive deficits in rats., Redrobe JP, Elster L, Frederiksen K, Bundgaard C, de Jong IE, Smith GP, Bruun AT, Larsen PH, Didriksen M., Psychopharmacology (Berl). June 1, 2012; 221 (3): 451-68.


In vivo evidence for the involvement of the carboxy terminal domain in assembling connexin 36 at the electrical synapse., Helbig I, Sammler E, Eliava M, Bolshakov AP, Rozov A, Bruzzone R, Monyer H, Hormuzdi SG., Mol Cell Neurosci. September 1, 2010; 45 (1): 47-58.                


Removing the invariant salt bridge of parvalbumin increases flexibility in the AB-loop structure., Hoh F, Cavé A, Strub MP, Banères JL, Padilla A., Acta Crystallogr D Biol Crystallogr. August 1, 2009; 65 (Pt 8): 733-43.


Spatiotemporal patterning of IP3-mediated Ca2+ signals in Xenopus oocytes by Ca2+-binding proteins., Dargan SL, Schwaller B, Parker I., J Physiol. April 15, 2004; 556 (Pt 2): 447-61.


Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS., Sakakibara S, Nakamura Y, Satoh H, Okano H., J Neurosci. October 15, 2001; 21 (20): 8091-107.


Control of IP(3)-mediated Ca2+ puffs in Xenopus laevis oocytes by the Ca2+-binding protein parvalbumin., John LM, Mosquera-Caro M, Camacho P, Lechleiter JD., J Physiol. August 15, 2001; 535 (Pt 1): 3-16.


Chemoarchitecture of the anuran auditory midbrain., Endepols H, Walkowiak W, Luksch H., Brain Res Brain Res Rev. September 1, 2000; 33 (2-3): 179-98.


Force-dependent and force-independent heat production in single slow- and fast-twitch muscle fibres from Xenopus laevis., Buschman HP, van der Laarse WJ, Stienen GJ, Elzinga G., J Physiol. October 15, 1996; 496 ( Pt 2) 503-19.


Slowing of relaxation and [Ca2+]i during prolonged tetanic stimulation of single fibres from Xenopus skeletal muscle., Westerblad H, Allen DG., J Physiol. May 1, 1996; 492 ( Pt 3) 723-36.


Anuran dorsal column nucleus: organization, immunohistochemical characterization, and fiber connections in Rana perezi and Xenopus laevis., Muñoz A, Muñoz M, González A, Ten Donkelaar HJ., J Comp Neurol. December 11, 1995; 363 (2): 197-220.


The potassium channel subunit KV3.1b is localized to somatic and axonal membranes of specific populations of CNS neurons., Weiser M, Bueno E, Sekirnjak C, Martone ME, Baker H, Hillman D, Chen S, Thornhill W, Ellisman M, Rudy B., J Neurosci. June 1, 1995; 15 (6): 4298-314.


Changes of the force-velocity relation, isometric tension and relaxation rate during fatigue in intact, single fibres of Xenopus skeletal muscle., Westerblad H, Lännergren J., J Muscle Res Cell Motil. June 1, 1994; 15 (3): 287-98.


Parvalbumin-immunoreactive material in the kidney of Xenopus laevis., Kerschbaum HH, Singh SK, Hermann A., Tissue Cell. February 1, 1994; 26 (1): 75-81.


Calcium-binding proteins in the inner ear of Xenopus laevis (Daudin)., Kerschbaum HH, Hermann A., Dev Biol. July 16, 1993; 617 (1): 43-9.        


Force relaxation, labile heat and parvalbumin content of skeletal muscle fibres of Xenopus laevis., Lännergren J, Elzinga G, Stienen GJ., J Physiol. April 1, 1993; 463 123-40.


Calcium-binding proteins in chemoreceptors of Xenopus laevis., Kerschbaum HH, Hermann A., Tissue Cell. January 1, 1992; 24 (5): 719-24.


Neural regulation of calmodulin in adult Xenopus leg muscle., Nishikawa BK, Kay BK., Cell Calcium. November 1, 1991; 12 (10): 683-93.


Parvalbumin expression in normal and mutant Xenopus embryos., Kay BK., Adv Exp Med Biol. January 1, 1990; 269 187-93.


Identification and quantification in single muscle fibers of four isoforms of parvalbumin in the iliofibularis muscle of Xenopus laevis., Simonides WS, van Hardeveld C., Biochim Biophys Acta. October 5, 1989; 998 (2): 137-44.


Differential expression of the Ca2+-binding protein parvalbumin during myogenesis in Xenopus laevis., Schwartz LM, Kay BK., Dev Biol. August 1, 1988; 128 (2): 441-52.              


Expression of the Ca2+-binding protein, parvalbumin, during embryonic development of the frog, Xenopus laevis., Kay BK, Shah AJ, Halstead WE., J Cell Biol. April 1, 1987; 104 (4): 841-7.              

???pagination.result.page??? 1