Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (35) GO Terms (2) Nucleotides (86) Proteins (46) Interactants (40) Wiki
XB-GENEPAGE-5887238

Papers associated with kcne3



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Optimized tight binding between the S1 segment and KCNE3 is required for the constitutively open nature of the KCNQ1-KCNE3 channel complex., Kasuya G, Nakajo K., Elife. November 4, 2022; 11               


KCNQ and KCNE Isoform-Dependent Pharmacology Rationalizes Native American Dual Use of Specific Plants as Both Analgesics and Gastrointestinal Therapeutics., Abbott GW, Redford KE, Yoshimura RF, Manville RW, Moreira L, Tran K, Arena G, Kookootsedes A, Lasky E, Gunnison E., Front Physiol. January 1, 2021; 12 777057.


Structure and physiological function of the human KCNQ1 channel voltage sensor intermediate state., Taylor KC, Kang PW, Hou P, Yang ND, Kuenze G, Smith JA, Shi J, Huang H, White KM, Peng D, George AL, Meiler J, McFeeters RL, Cui J, Sanders CR., Elife. February 25, 2020; 9                                     


Deconstruction of an African folk medicine uncovers a novel molecular strategy for therapeutic potassium channel activation., De Silva AM, Manville RW, Abbott GW., Sci Adv. November 14, 2018; 4 (11): eaav0824.            


KCNE1 and KCNE3 modulate KCNQ1 channels by affecting different gating transitions., Barro-Soria R, Ramentol R, Liin SI, Perez ME, Kass RS, Larsson HP., Proc Natl Acad Sci U S A. August 29, 2017; 114 (35): E7367-E7376.


Regulation of human cardiac potassium channels by full-length KCNE3 and KCNE4., Abbott GW., Sci Rep. December 6, 2016; 6 38412.              


Novel exon 1 protein-coding regions N-terminally extend human KCNE3 and KCNE4., Abbott GW., FASEB J. August 1, 2016; 30 (8): 2959-69.


KCNE3 acts by promoting voltage sensor activation in KCNQ1., Barro-Soria R, Perez ME, Larsson HP., Proc Natl Acad Sci U S A. December 29, 2015; 112 (52): E7286-92.


Functional assembly of Kv7.1/Kv7.5 channels with emerging properties on vascular muscle physiology., Oliveras A, Roura-Ferrer M, Solé L, de la Cruz A, Prieto A, Etxebarria A, Manils J, Morales-Cano D, Condom E, Soler C, Cogolludo A, Valenzuela C, Villarroel A, Comes N, Felipe A., Arterioscler Thromb Vasc Biol. July 1, 2014; 34 (7): 1522-30.


KCNQ1 subdomains involved in KCNE modulation revealed by an invertebrate KCNQ1 orthologue., Nakajo K, Nishino A, Okamura Y, Kubo Y., J Gen Physiol. November 1, 2011; 138 (5): 521-35.                        


Extracellular potassium inhibits Kv7.1 potassium channels by stabilizing an inactivated state., Larsen AP, Steffensen AB, Grunnet M, Olesen SP., Biophys J. August 17, 2011; 101 (4): 818-27.


Effect of the I(to) activator NS5806 on cloned K(V)4 channels depends on the accessory protein KChIP2., Lundby A, Jespersen T, Schmitt N, Grunnet M, Olesen SP, Cordeiro JM, Calloe K., Br J Pharmacol. August 1, 2010; 160 (8): 2028-44.


A shared mechanism for lipid- and beta-subunit-coordinated stabilization of the activated K+ channel voltage sensor., Choi E, Abbott GW., FASEB J. May 1, 2010; 24 (5): 1518-24.


Functional delivery of a membrane protein into oocyte membranes using bicelles., Kang C, Vanoye CG, Welch RC, Van Horn WD, Sanders CR., Biochemistry. February 2, 2010; 49 (4): 653-5.


KCNE1 and KCNE3 beta-subunits regulate membrane surface expression of Kv12.2 K(+) channels in vitro and form a tripartite complex in vivo., Clancy SM, Chen B, Bertaso F, Mamet J, Jegla T., PLoS One. July 22, 2009; 4 (7): e6330.          


Functional implications of KCNE subunit expression for the Kv7.5 (KCNQ5) channel., Roura-Ferrer M, Etxebarria A, Solé L, Oliveras A, Comes N, Villarroel A, Felipe A., Cell Physiol Biochem. January 1, 2009; 24 (5-6): 325-34.


KCNE1 constrains the voltage sensor of Kv7.1 K+ channels., Shamgar L, Haitin Y, Yisharel I, Malka E, Schottelndreier H, Peretz A, Paas Y, Attali B., PLoS One. April 9, 2008; 3 (4): e1943.                    


KCNE peptides differently affect voltage sensor equilibrium and equilibration rates in KCNQ1 K+ channels., Rocheleau JM, Kobertz WR., J Gen Physiol. January 1, 2008; 131 (1): 59-68.        


KCNE3 mutation V17M identified in a patient with lone atrial fibrillation., Lundby A, Ravn LS, Svendsen JH, Hauns S, Olesen SP, Schmitt N., Cell Physiol Biochem. January 1, 2008; 21 (1-3): 47-54.


KCNQ1 mutation Q147R is associated with atrial fibrillation and prolonged QT interval., Lundby A, Ravn LS, Svendsen JH, Olesen SP, Schmitt N., Heart Rhythm. December 1, 2007; 4 (12): 1532-41.


KCNE1 and KCNE3 stabilize and/or slow voltage sensing S4 segment of KCNQ1 channel., Nakajo K, Kubo Y., J Gen Physiol. September 1, 2007; 130 (3): 269-81.            


A derivatized scorpion toxin reveals the functional output of heteromeric KCNQ1-KCNE K+ channel complexes., Morin TJ, Kobertz WR., ACS Chem Biol. July 20, 2007; 2 (7): 469-73.


The role of S4 charges in voltage-dependent and voltage-independent KCNQ1 potassium channel complexes., Panaghie G, Abbott GW., J Gen Physiol. February 1, 2007; 129 (2): 121-33.                      


Ancillary subunits and stimulation frequency determine the potency of chromanol 293B block of the KCNQ1 potassium channel., Bett GC, Morales MJ, Beahm DL, Duffey ME, Rasmusson RL., J Physiol. November 1, 2006; 576 (Pt 3): 755-67.


KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel., Lundby A, Olesen SP., Biochem Biophys Res Commun. August 4, 2006; 346 (3): 958-67.


Interaction of KCNE subunits with the KCNQ1 K+ channel pore., Panaghie G, Tai KK, Abbott GW., J Physiol. February 1, 2006; 570 (Pt 3): 455-67.


KCNE3 truncation mutants reveal a bipartite modulation of KCNQ1 K+ channels., Gage SD, Kobertz WR., J Gen Physiol. December 1, 2004; 124 (6): 759-71.                  


Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels., Seebohm G, Sanguinetti MC, Pusch M., J Physiol. October 15, 2003; 552 (Pt 2): 369-78.


KCNE2 modulates current amplitudes and activation kinetics of HCN4: influence of KCNE family members on HCN4 currents., Decher N, Bundis F, Vajna R, Steinmeyer K., Pflugers Arch. September 1, 2003; 446 (6): 633-40.


P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport., Köttgen M, Löffler T, Jacobi C, Nitschke R, Pavenstädt H, Schreiber R, Frische S, Nielsen S, Leipziger J., J Clin Invest. February 1, 2003; 111 (3): 371-9.


Xe991 reveals differences in K(+) channels regulating chloride secretion in murine airway and colonic epithelium., MacVinish LJ, Guo Y, Dixon AK, Murrell-Lagnado RD, Cuthbert AW., Mol Pharmacol. October 1, 2001; 60 (4): 753-60.


Regulation and properties of KCNQ1 (K(V)LQT1) and impact of the cystic fibrosis transmembrane conductance regulator., Boucherot A, Schreiber R, Kunzelmann K., J Membr Biol. July 1, 2001; 182 (1): 39-47.


MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis., Abbott GW, Butler MH, Bendahhou S, Dalakas MC, Ptacek LJ, Goldstein SA., Cell. January 26, 2001; 104 (2): 217-31.


KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel., Tinel N, Diochot S, Borsotto M, Lazdunski M, Barhanin J., EMBO J. December 1, 2000; 19 (23): 6326-30.


A constitutively open potassium channel formed by KCNQ1 and KCNE3., Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R, Jentsch TJ., Nature. January 13, 2000; 403 (6766): 196-9.

???pagination.result.page??? 1