Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (44) GO Terms (14) Nucleotides (231) Proteins (38) Interactants (546) Wiki
XB-GENEPAGE-5903503

Papers associated with pou5f3.3



???displayGene.coCitedPapers???
9 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Hybridization led to a rewired pluripotency network in the allotetraploid Xenopus laevis., Phelps WA, Hurton MD, Ayers TN, Carlson AE, Rosenbaum JC, Lee MT., Elife. October 3, 2023; 12                             


Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR., Sempou E, Kostiuk V, Zhu J, Cecilia Guerra M, Tyan L, Hwang W, Camacho-Aguilar E, Caplan MJ, Zenisek D, Warmflash A, Owens NDL, Khokha MK., Nat Commun. November 5, 2022; 13 (1): 6681.                                            


Quantitative analysis of transcriptome dynamics provides novel insights into developmental state transitions., Johnson K, Freedman S, Braun R, LaBonne C., BMC Genomics. October 23, 2022; 23 (1): 723.                                  


The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus., Jukam D, Kapoor RR, Straight AF, Skotheim JM., Curr Biol. October 11, 2021; 31 (19): 4269-4281.e8.                          


Pou5f3.3 is involved in establishment and maintenance of hematopoietic cells during Xenopus development., Ezawa M, Kouno F, Kubo H, Sakuma T, Yamamoto T, Kinoshita T., Tissue Cell. October 1, 2021; 72 101531.


Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates., Bright AR, van Genesen S, Li Q, Grasso A, Frölich S, van der Sande M, van Heeringen SJ, Veenstra GJC., EMBO J. May 3, 2021; 40 (9): e104913.                        


Cytoskeletal Protein Zyxin Inhibits the Activity of Genes Responsible for Embryonic Stem Cell Status., Parshina EA, Eroshkin FM, Оrlov EE, Gyoeva FK, Shokhina AG, Staroverov DB, Belousov VV, Zhigalova NA, Prokhortchouk EB, Zaraisky AG, Martynova NY., Cell Rep. November 17, 2020; 33 (7): 108396.                  


Chromatin accessibility and histone acetylation in the regulation of competence in early development., Esmaeili M, Blythe SA, Tobias JW, Zhang K, Yang J, Klein PS., Dev Biol. June 1, 2020; 462 (1): 20-35.                


Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals., Gentsch GE, Spruce T, Owens NDL, Smith JC., Nat Commun. September 19, 2019; 10 (1): 4269.                                        


Transcriptome profiling reveals male- and female-specific gene expression pattern and novel gene candidates for the control of sex determination and gonad development in Xenopus laevis., Piprek RP, Damulewicz M, Tassan JP, Kloc M, Kubiak JZ., Dev Genes Evol. May 1, 2019; 229 (2-3): 53-72.        


The Xenopus animal cap transcriptome: building a mucociliary epithelium., Angerilli A, Smialowski P, Rupp RA., Nucleic Acids Res. September 28, 2018; 46 (17): 8772-8787.                          


Histone deacetylase activity has an essential role in establishing and maintaining the vertebrate neural crest., Rao A, LaBonne C., Development. August 8, 2018; 145 (15):                           


FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest., Geary L, LaBonne C., Elife. January 19, 2018; 7                     


A novel role for sox7 in Xenopus early primordial germ cell development: mining the PGC transcriptome., Butler AM, Owens DA, Wang L, King ML., Development. January 8, 2018; 145 (1):                                                 


Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2., Scerbo P, Marchal L, Kodjabachian L., Elife. June 27, 2017; 6                               


A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo., Blitz IL, Paraiso KD, Patrushev I, Chiu WTY, Cho KWY, Gilchrist MJ., Dev Biol. June 15, 2017; 426 (2): 409-417.        


sall1 and sall4 repress pou5f3 family expression to allow neural patterning, differentiation, and morphogenesis in Xenopus laevis., Exner CRT, Kim AY, Mardjuki SM, Harland RM., Dev Biol. May 1, 2017; 425 (1): 33-43.                                    


A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT., Gao L, Zhu X, Chen G, Ma X, Zhang Y, Zhang Y, Khand AA, Shi H, Gu F, Lin H, Chen Y, Zhang H, He L, Tao Q, Tao Q., Development. February 1, 2016; 143 (3): 492-503.                            


Pou5f3.2-induced proliferative state of embryonic cells during gastrulation of Xenopus laevis embryo., Nishitani E, Li C, Lee J, Hotta H, Katayama Y, Yamaguchi M, Kinoshita T., Dev Growth Differ. December 1, 2015; 57 (9): 591-600.              


NEURODEVELOPMENT. Shared regulatory programs suggest retention of blastula-stage potential in neural crest cells., Buitrago-Delgado E, Nordin K, Rao A, Geary L, LaBonne C., Science. June 19, 2015; 348 (6241): 1332-5.


Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program., Chiu WT, Charney Le R, Blitz IL, Fish MB, Li Y, Biesinger J, Xie X, Cho KW., Development. December 1, 2014; 141 (23): 4537-47.                                  


Possible regulation of Oct60 transcription by a positive feedback loop in Xenopus oocytes., Morichika K, Sugimoto M, Yasuda K, Kinoshita T., Zygote. May 1, 2014; 1-9.


Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus., Young JJ, Kjolby RA, Kong NR, Monica SD, Harland RM., Development. April 1, 2014; 141 (8): 1683-93.                                                                


Retinoic acid regulation by CYP26 in vertebrate lens regeneration., Thomas AG, Henry JJ., Dev Biol. February 15, 2014; 386 (2): 291-301.            


A conserved Oct4/POUV-dependent network links adhesion and migration to progenitor maintenance., Livigni A, Peradziryi H, Sharov AA, Chia G, Hammachi F, Migueles RP, Sukparangsi W, Pernagallo S, Bradley M, Nichols J, Ko MSH, Brickman JM., Curr Biol. November 18, 2013; 23 (22): 2233-2244.                                    


Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells., Perry KJ, Thomas AG, Henry JJ., Dev Biol. February 15, 2013; 374 (2): 281-94.                


Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene., Nicetto D, Hahn M, Jung J, Schneider TD, Straub T, David R, Schotta G, Rupp RA., PLoS Genet. January 1, 2013; 9 (1): e1003188.                                                                


Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry., Flachsova M, Sindelka R, Kubista M., Sci Rep. January 1, 2013; 3 2278.      


Canonical WNT signaling enhances stem cell expression in the developing heart without a corresponding inhibition of cardiogenic differentiation., Martin LK, Mezentseva NV, Bratoeva M, Ramsdell AF, Eisenberg CA, Eisenberg LM., Stem Cells Dev. November 1, 2011; 20 (11): 1973-83.


Negative autoregulation of Oct3/4 through Cdx1 promotes the onset of gastrulation., Rousso SZ, Schyr RB, Gur M, Zouela N, Kot-Leibovich H, Shabtai Y, Koutsi-Urshanski N, Baldessari D, Pillemer G, Niehrs C, Fainsod A., Dev Dyn. April 1, 2011; 240 (4): 796-807.        


Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling., Day RC, Beck CW., BMC Dev Biol. January 26, 2011; 11 54.                                                


Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo., Lim JW, Hummert P, Mills JC, Kroll KL., Development. January 1, 2011; 138 (1): 33-44.                    


Reversal of Xenopus Oct25 function by disruption of the POU domain structure., Cao Y, Oswald F, Wacker SA, Bundschu K, Knöchel W., J Biol Chem. March 12, 2010; 285 (11): 8408-21.


Xmc mediates Xctr1-independent morphogenesis in Xenopus laevis., Haremaki T, Weinstein DC., Dev Dyn. September 1, 2009; 238 (9): 2382-7.            


Intracellular expression profiles measured by real-time PCR tomography in the Xenopus laevis oocyte., Sindelka R, Jonák J, Hands R, Bustin SA, Kubista M., Nucleic Acids Res. February 1, 2008; 36 (2): 387-92.        


The Sox axis, Nodal signaling, and germ layer specification., Zhang C, Klymkowsky MW., Differentiation. July 1, 2007; 75 (6): 536-45.          


POU-V factors antagonize maternal VegT activity and beta-Catenin signaling in Xenopus embryos., Cao Y, Siegel D, Donow C, Knöchel S, Yuan L, Knöchel W., EMBO J. June 20, 2007; 26 (12): 2942-54.


The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction., Takebayashi-Suzuki K, Arita N, Murasaki E, Suzuki A., Mech Dev. January 1, 2007; 124 (11-12): 840-55.    


Xenopus POU factors of subclass V inhibit activin/nodal signaling during gastrulation., Cao Y, Siegel D, Knöchel W., Mech Dev. August 1, 2006; 123 (8): 614-25.            


Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development., Morrison GM, Brickman JM., Development. May 1, 2006; 133 (10): 2011-22.                


Early embryonic expression of XLPOU-60, a Xenopus POU-domain protein., Whitfield TT, Heasman J, Wylie CC., Dev Biol. June 1, 1995; 169 (2): 759-69.


Nonsense-mediated mRNA decay in Xenopus oocytes and embryos., Whitfield TT, Sharpe CR, Wylie CC., Dev Biol. October 1, 1994; 165 (2): 731-4.


XLPOU-60, a Xenopus POU-domain mRNA, is oocyte-specific from very early stages of oogenesis, and localised to presumptive mesoderm and ectoderm in the blastula., Whitfield T, Heasman J, Wylie C., Dev Biol. February 1, 1993; 155 (2): 361-70.                  


Sequential expression of multiple POU proteins during amphibian early development., Hinkley CS, Martin JF, Leibham D, Perry M., Mol Cell Biol. February 1, 1992; 12 (2): 638-49.

???pagination.result.page??? 1