Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (94) GO Terms (4) Nucleotides (150) Proteins (32) Interactants (205) Wiki
XB--5994597

Papers associated with chrna4



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Advancements in the use of xenopus oocytes for modelling neurological disease for novel drug discovery., O'Connor EC, Kambara K, Bertrand D., Expert Opin Drug Discov. February 1, 2024; 19 (2): 173-187.      


Sleep-related hypermotor epilepsy associated mutations uncover important kinetic roles of α4β2- nicotinic acetylcholine receptor intracellular structures., Weltzin MM, George AA, Lukas RJ, Whiteaker P., PLoS One. March 3, 2021; 16 (3): e0247825.                      


Remarkable effect of transdermal nicotine in children with CHRNA4-related autosomal dominant sleep-related hypermotor epilepsy., Lossius K, de Saint Martin A, Myren-Svelstad S, Bjørnvold M, Minken G, Seegmuller C, Valenti Hirsch MP, Chelly J, Steinlein O, Picard F, Brodtkorb E., Epilepsy Behav. April 1, 2020; 105 106944.


Genomic Takeover by Transposable Elements in the Strawberry Poison Frog., Rogers RL, Zhou L, Chu C, Márquez R, Corl A, Linderoth T, Freeborn L, MacManes MD, Xiong Z, Zheng J, Guo C, Xun X, Kronforst MR, Summers K, Wu Y, Yang H, Richards-Zawacki CL, Zhang G, Nielsen R., Mol Biol Evol. December 1, 2018; 35 (12): 2913-2927.              


Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis., Ding Y, Ploper D, Sosa EA, Colozza G, Moriyama Y, Benitez MD, Zhang K, Merkurjev D, De Robertis EM., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.                        


Assessment of the functionality and stability of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology., Padilla-Morales LF, Colón-Sáez JO, González-Nieves JE, Quesada-González O, Lasalde-Dominicci JA., Biochim Biophys Acta. January 1, 2016; 1858 (1): 47-56.


The Conqueror Worm: recent advances with cholinergic anthelmintics and techniques excite research for better therapeutic drugs., Martin RJ, Puttachary S, Buxton SK, Verma S, Robertson AP., J Helminthol. July 1, 2015; 89 (4): 387-97.              


α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties., Thomsen MS, Zwart R, Ursu D, Jensen MM, Pinborg LH, Gilmour G, Wu J, Sher E, Mikkelsen JD., PLoS One. June 18, 2015; 10 (6): e0130572.              


The analgesic-like properties of the alpha7 nAChR silent agonist NS6740 is associated with non-conducting conformations of the receptor., Papke RL, Bagdas D, Kulkarni AR, Gould T, AlSharari SD, Thakur GA, Damaj MI., Neuropharmacology. April 1, 2015; 91 34-42.


6-bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor., Kasheverov IE, Shelukhina IV, Kudryavtsev DS, Makarieva TN, Spirova EN, Guzii AG, Stonik VA, Tsetlin VI., Mar Drugs. March 12, 2015; 13 (3): 1255-66.        


Identification of key amino acid differences between Cyrtorhinus lividipennis and Nilaparvata lugens nAChR α8 subunits contributing to neonicotinoid sensitivity., Guo B, Zhang Y, Meng X, Bao H, Fang J, Liu Z., Neurosci Lett. March 4, 2015; 589 163-8.


Functional characterization of AT-1001, an α3β4 nicotinic acetylcholine receptor ligand, at human α3β4 and α4β2 nAChR., Zaveri NT, Bertrand S, Yasuda D, Bertrand D., Nicotine Tob Res. March 1, 2015; 17 (3): 361-7.


Structurally similar allosteric modulators of α7 nicotinic acetylcholine receptors exhibit five distinct pharmacological effects., Gill-Thind JK, Dhankher P, D'Oyley JM, Sheppard TD, Millar NS., J Biol Chem. February 6, 2015; 290 (6): 3552-62.              


Identification of key amino acid differences contributing to neonicotinoid sensitivity between two nAChR α subunits from Pardosa pseudoannulata., Meng X, Zhang Y, Guo B, Sun H, Liu C, Liu Z., Neurosci Lett. January 1, 2015; 584 123-8.


Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor., Lipovsek M, Fierro A, Pérez EG, Boffi JC, Millar NS, Fuchs PA, Katz E, Elgoyhen AB., Mol Biol Evol. December 1, 2014; 31 (12): 3250-65.                  


Characterization of a T-superfamily conotoxin TxVC from Conus textile that selectively targets neuronal nAChR subtypes., Wang S, Du T, Liu Z, Wang S, Wu Y, Ding J, Jiang L, Dai Q., Biochem Biophys Res Commun. November 7, 2014; 454 (1): 151-6.


Roles for N-terminal extracellular domains of nicotinic acetylcholine receptor (nAChR) β3 subunits in enhanced functional expression of mouse α6β2β3- and α6β4β3-nAChRs., Dash B, Li MD, Lukas RJ., J Biol Chem. October 10, 2014; 289 (41): 28338-51.


Two rare variations, D478N and D478E, that occur at the same amino acid residue in nicotinic acetylcholine receptor (nAChR) α2 subunit influence nAChR function., Dash B, Li MD., Neuropharmacology. October 1, 2014; 85 471-81.


Functional interactions of varenicline and nicotine with nAChR subtypes implicated in cardiovascular control., Rollema H, Russ C, Lee TC, Hurst RS, Bertrand D., Nicotine Tob Res. June 1, 2014; 16 (6): 733-42.


Analysis of rare variations reveals roles of amino acid residues in the N-terminal extracellular domain of nicotinic acetylcholine receptor (nAChR) alpha6 subunit in the functional expression of human alpha6*-nAChRs., Dash B, Li MD., Mol Brain. May 2, 2014; 7 35.                


NMR structures of the human α7 nAChR transmembrane domain and associated anesthetic binding sites., Bondarenko V, Mowrey DD, Tillman TS, Seyoum E, Xu Y, Xu Y, Tang P., Biochim Biophys Acta. May 1, 2014; 1838 (5): 1389-95.


Presence of multiple binding sites on α9α10 nAChR receptors alludes to stoichiometric-dependent action of the α-conotoxin, Vc1.1., Indurthi DC, Pera E, Kim HL, Chu C, McLeod MD, McIntosh JM, Absalom NL, Chebib M., Biochem Pharmacol. May 1, 2014; 89 (1): 131-40.


Discovery of a potent and selective α3β4 nicotinic acetylcholine receptor antagonist from an α-conotoxin synthetic combinatorial library., Chang YP, Banerjee J, Dowell C, Wu J, Gyanda R, Houghten RA, Toll L, McIntosh JM, Armishaw CJ., J Med Chem. April 24, 2014; 57 (8): 3511-21.              


Marine natural products acting on the acetylcholine-binding protein and nicotinic receptors: from computer modeling to binding studies and electrophysiology., Kudryavtsev D, Makarieva T, Utkina N, Santalova E, Kryukova E, Methfessel C, Tsetlin V, Stonik V, Kasheverov I., Mar Drugs. March 28, 2014; 12 (4): 1859-75.            


Rare human nicotinic acetylcholine receptor α4 subunit (CHRNA4) variants affect expression and function of high-affinity nicotinic acetylcholine receptors., McClure-Begley TD, Papke RL, Stone KL, Stokes C, Levy AD, Gelernter J, Xie P, Lindstrom J, Picciotto MR., J Pharmacol Exp Ther. March 1, 2014; 348 (3): 410-20.


The activity of GAT107, an allosteric activator and positive modulator of α7 nicotinic acetylcholine receptors (nAChR), is regulated by aromatic amino acids that span the subunit interface., Papke RL, Horenstein NA, Kulkarni AR, Stokes C, Corrie LW, Maeng CY, Thakur GA., J Biol Chem. February 14, 2014; 289 (7): 4515-31.


Investigation of acetylcholine receptor diversity in a nematode parasite leads to characterization of tribendimidine- and derquantel-sensitive nAChRs., Buxton SK, Charvet CL, Neveu C, Cabaret J, Cortet J, Peineau N, Abongwa M, Courtot E, Robertson AP, Martin RJ., PLoS Pathog. January 30, 2014; 10 (1): e1003870.            


Functional characterisation of a nicotinic acetylcholine receptor α subunit from the brown dog tick, Rhipicephalus sanguineus., Lees K, Jones AK, Matsuda K, Akamatsu M, Sattelle DB, Woods DJ, Bowman AS., Int J Parasitol. January 1, 2014; 44 (1): 75-81.              


Alternative splice isoforms of small conductance calcium-activated SK2 channels differ in molecular interactions and surface levels., Scholl ES, Pirone A, Cox DH, Duncan RK, Jacob MH., Channels (Austin). January 1, 2014; 8 (1): 62-75.                            


Preliminary results of the in vivo and in vitro characterization of a tentacle venom fraction from the jellyfish Aurelia aurita., Ponce D, López-Vera E, Aguilar MB, Sánchez-Rodríguez J., Toxins (Basel). December 6, 2013; 5 (12): 2420-33.        


The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor (nAChR) ligands. Part 1: the influence of different hydrogen bond acceptor systems on alkyl and (hetero)aryl substituents., Eibl C, Tomassoli I, Munoz L, Stokes C, Papke RL, Gündisch D., Bioorg Med Chem. December 1, 2013; 21 (23): 7283-308.


Multiple modes of α7 nAChR noncompetitive antagonism of control agonist-evoked and allosterically enhanced currents., Peng C, Kimbrell MR, Tian C, Pack TF, Crooks PA, Fifer EK, Papke RL., Mol Pharmacol. September 1, 2013; 84 (3): 459-75.


Venomous secretions from marine snails of the Terebridae family target acetylcholine receptors., Kendel Y, Melaun C, Kurz A, Nicke A, Peigneur S, Tytgat J, Wunder C, Mebs D, Kauferstein S., Toxins (Basel). May 21, 2013; 5 (5): 1043-50.    


RIC-3 differentially modulates α4β2 and α7 nicotinic receptor assembly, expression, and nicotine-induced receptor upregulation., Dau A, Komal P, Truong M, Morris G, Evans G, Nashmi R., BMC Neurosci. April 15, 2013; 14 47.                


Multisite binding of a general anesthetic to the prokaryotic pentameric Erwinia chrysanthemi ligand-gated ion channel (ELIC)., Spurny R, Billen B, Howard RJ, Brams M, Debaveye S, Price KL, Weston DA, Strelkov SV, Tytgat J, Bertrand S, Bertrand D, Lummis SCR, Ulens C., J Biol Chem. March 22, 2013; 288 (12): 8355-8364.                


Point-to-point ligand-receptor interactions across the subunit interface modulate the induction and stabilization of conformational states of alpha7 nAChR by benzylidene anabaseines., Isaacson MD, Horenstein NA, Stokes C, Kem WR, Papke RL., Biochem Pharmacol. March 15, 2013; 85 (6): 817-28.


Molecular cloning and characterization of novel glutamate-gated chloride channel subunits from Schistosoma mansoni., Dufour V, Beech RN, Wever C, Dent JA, Geary TG., PLoS Pathog. January 1, 2013; 9 (8): e1003586.            


Menthol binding and inhibition of α7-nicotinic acetylcholine receptors., Ashoor A, Nordman JC, Veltri D, Yang KH, Al Kury L, Shuba Y, Mahgoub M, Howarth FC, Sadek B, Shehu A, Kabbani N, Oz M., PLoS One. January 1, 2013; 8 (7): e67674.              


α6 nAChR subunit residues that confer α-conotoxin BuIA selectivity., Kim HW, McIntosh JM., FASEB J. October 1, 2012; 26 (10): 4102-10.


Azemiopsin from Azemiops feae viper venom, a novel polypeptide ligand of nicotinic acetylcholine receptor., Utkin YN, Weise C, Kasheverov IE, Andreeva TV, Kryukova EV, Zhmak MN, Starkov VG, Hoang NA, Bertrand D, Ramerstorfer J, Sieghart W, Thompson AJ, Lummis SC, Tsetlin VI., J Biol Chem. August 3, 2012; 287 (32): 27079-86.          


The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and heteromeric ion channels., Lansdell SJ, Collins T, Goodchild J, Millar NS., BMC Neurosci. June 22, 2012; 13 73.        


Modulation of recombinant, α2*, α3* or α4*-nicotinic acetylcholine receptor (nAChR) function by nAChR β3 subunits., Dash B, Bhakta M, Chang Y, Lukas RJ., J Neurochem. May 1, 2012; 121 (3): 349-61.


Memantine inhibits α3β2-nAChRs-mediated nitrergic neurogenic vasodilation in porcine basilar arteries., Lee RH, Tseng TY, Wu CY, Chen PY, Chen MF, Kuo JS, Lee TJ., PLoS One. January 1, 2012; 7 (7): e40326.            


Competitive binding at a nicotinic receptor transmembrane site of two α7-selective positive allosteric modulators with differing effects on agonist-evoked desensitization., Collins T, Young GT, Millar NS., Neuropharmacology. December 1, 2011; 61 (8): 1306-13.              


Identification of N-terminal extracellular domain determinants in nicotinic acetylcholine receptor (nAChR) α6 subunits that influence effects of wild-type or mutant β3 subunits on function of α6β2*- or α6β4*-nAChR., Dash B, Bhakta M, Chang Y, Lukas RJ., J Biol Chem. November 4, 2011; 286 (44): 37976-37989.


Reporter mutation studies show that nicotinic acetylcholine receptor (nAChR) α5 Subunits and/or variants modulate function of α6*-nAChR., Dash B, Chang Y, Lukas RJ., J Biol Chem. November 4, 2011; 286 (44): 37905-37918.


FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method., Li C, Wen A, Shen B, Lu J, Huang Y, Chang Y., BMC Biotechnol. October 12, 2011; 11 92.            


A fungal metabolite asperparaline a strongly and selectively blocks insect nicotinic acetylcholine receptors: the first report on the mode of action., Hirata K, Kataoka S, Furutani S, Hayashi H, Matsuda K., PLoS One. April 1, 2011; 6 (4): e18354.              


Rapid desensitization of the rat α7 nAChR is facilitated by the presence of a proline residue in the outer β-sheet., McCormack TJ, Melis C, Colón J, Gay EA, Mike A, Karoly R, Lamb PW, Molteni C, Yakel JL., J Physiol. November 15, 2010; 588 (Pt 22): 4415-29.


Biochemical and functional properties of distinct nicotinic acetylcholine receptors in the superior cervical ganglion of mice with targeted deletions of nAChR subunit genes., David R, Ciuraszkiewicz A, Simeone X, Orr-Urtreger A, Papke RL, McIntosh JM, Huck S, Scholze P., Eur J Neurosci. March 1, 2010; 31 (6): 978-93.

???pagination.result.page??? 1 2 ???pagination.result.next???