Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (23) GO Terms (10) Nucleotides (104) Proteins (42) Interactants (64) Wiki
XB-GENEPAGE-6042120

Papers associated with cacna1h

Search for cacna1h morpholinos using Textpresso

Limit to papers also referencing gene:

Results 1 - 23 of 23 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Calcium Signaling in Vertebrate Development and Its Role in Disease., Paudel S, Sindelar R, Saha M., Int J Mol Sci. October 30, 2018; 19 (11):     


Functional variants in HCN4 and CACNA1H may contribute to genetic generalized epilepsy., Becker F, Reid CA, Hallmann K, Tae HS, Phillips AM, Teodorescu G, Weber YG, Kleefuss-Lie A, Elger C, Perez-Reyes E, Petrou S, Kunz WS, Lerche H, Maljevic S., Epilepsia Open. January 1, 2017; 2 (3): 334-342.        


T-type Calcium Channel Regulation of Neural Tube Closure and EphrinA/EPHA Expression., Abdul-Wajid S, Morales-Diaz H, Khairallah SM, Smith WC., Cell Rep. October 27, 2015; 13 (4): 829-839.      


Differential zinc permeation and blockade of L-type Ca2+ channel isoforms Cav1.2 and Cav1.3., Park SJ, Min SH, Kang HW, Lee JH., Biochim Biophys Acta. October 1, 2015; 1848 (10 Pt A): 2092-100.


Ca-α1T, a fly T-type Ca2+ channel, negatively modulates sleep., Jeong K, Lee S, Seo H, Oh Y, Jang D, Choe J, Kim D, Lee JH, Jones WD., Sci Rep. September 21, 2015; 5 17893.            


The role of voltage-gated calcium channels in neurotransmitter phenotype specification: Coexpression and functional analysis in Xenopus laevis., Lewis BB, Miller LE, Herbst WA, Saha MS., J Comp Neurol. August 1, 2014; 522 (11): 2518-31.                          


Selective modulation of cellular voltage-dependent calcium channels by hyperbaric pressure-a suggested HPNS partial mechanism., Aviner B, Gradwohl G, Mor Aviner M, Levy S, Grossman Y., Front Cell Neurosci. January 1, 2014; 8 136.                    


Cooperative activation of the T-type CaV3.2 channel: interaction between Domains II and III., Demers-Giroux PO, Bourdin B, Sauvé R, Parent L., J Biol Chem. October 11, 2013; 288 (41): 29281-93.


A post-burst after depolarization is mediated by group i metabotropic glutamate receptor-dependent upregulation of Ca(v)2.3 R-type calcium channels in CA1 pyramidal neurons., Park JY, Remy S, Varela J, Cooper DC, Chung S, Kang HW, Lee JH, Spruston N., PLoS Biol. November 16, 2010; 8 (11): e1000534.                    


Structural determinants of the high affinity extracellular zinc binding site on Cav3.2 T-type calcium channels., Kang HW, Vitko I, Lee SS, Perez-Reyes E, Lee JH, Lee JH., J Biol Chem. January 29, 2010; 285 (5): 3271-81.


Tarantula toxin ProTx-I differentiates between human T-type voltage-gated Ca2+ Channels Cav3.1 and Cav3.2., Ohkubo T, Yamazaki J, Kitamura K., J Pharmacol Sci. January 1, 2010; 112 (4): 452-8.


Cloning and characterization of voltage-gated calcium channel alpha1 subunits in Xenopus laevis during development., Lewis BB, Wester MR, Miller LE, Nagarkar MD, Johnson MB, Saha MS., Dev Dyn. November 1, 2009; 238 (11): 2891-902.                                


Five different profiles of dihydropyridines in blocking T-type Ca(2+) channel subtypes (Ca(v)3.1 (alpha(1G)), Ca(v)3.2 (alpha(1H)), and Ca(v)3.3 (alpha(1I))) expressed in Xenopus oocytes., Furukawa T, Nukada T, Namiki Y, Miyashita Y, Hatsuno K, Ueno Y, Yamakawa T, Isshiki T., Eur J Pharmacol. June 24, 2009; 613 (1-3): 100-7.


An extracellular Cu2+ binding site in the voltage sensor of BK and Shaker potassium channels., Ma Z, Wong KY, Horrigan FT., J Gen Physiol. May 1, 2008; 131 (5): 483-502.                      


Regulation of CA(v)3.2 Ca2+ channel activity by protein tyrosine phosphorylation., Huh SU, Kang HW, Park JY, Lee JH, Lee JH., J Microbiol Biotechnol. February 1, 2008; 18 (2): 365-8.


Histidine residues in the IS3-IS4 loop are critical for nickel-sensitive inhibition of the Cav2.3 calcium channel., Kang HW, Moon HJ, Joo SH, Lee JH, Lee JH., FEBS Lett. December 22, 2007; 581 (30): 5774-80.


Activation of protein kinase C augments T-type Ca2+ channel activity without changing channel surface density., Park JY, Kang HW, Moon HJ, Huh SU, Jeong SW, Soldatov NM, Lee JH., J Physiol. December 1, 2006; 577 (Pt 2): 513-23.


Augmentation of Cav3.2 T-type calcium channel activity by cAMP-dependent protein kinase A., Kim JA, Park JY, Kang HW, Huh SU, Jeong SW, Lee JH, Lee JH., J Pharmacol Exp Ther. July 1, 2006; 318 (1): 230-7.


A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels., Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, Perez-Reyes E, Lee JH, Lee JH., J Biol Chem. February 24, 2006; 281 (8): 4823-30.


Identification and electrophysiological characteristics of isoforms of T-type calcium channel Ca(v)3.2 expressed in pregnant human uterus., Ohkubo T, Inoue Y, Kawarabayashi T, Kitamura K., Cell Physiol Biochem. January 1, 2005; 16 (4-6): 245-54.


Multiple structural elements contribute to the slow kinetics of the Cav3.3 T-type channel., Park JY, Kang HW, Jeong SW, Lee JH, Lee JH., J Biol Chem. May 21, 2004; 279 (21): 21707-13.


Modulation of Ca(v)3.2 T-type Ca2+ channels by protein kinase C., Park JY, Jeong SW, Perez-Reyes E, Lee JH, Lee JH., FEBS Lett. July 17, 2003; 547 (1-3): 37-42.


Molecular characterization of two members of the T-type calcium channel family., Perez-Reyes E, Lee JH, Cribbs LL., Ann N Y Acad Sci. April 30, 1999; 868 131-43.

Page(s): 1