Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (28) GO Terms (8) Nucleotides (68) Proteins (33) Interactants (169) Wiki
XB-GENEPAGE-6257850

Papers associated with csf1r



???displayGene.coCitedPapers???
1 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Amphibian myelopoiesis., Yaparla A, Stern DB, Hossainey MRH, Crandall KA, Grayfer L., Dev Comp Immunol. September 1, 2023; 146 104701.


regeneration factors expressed on myeloid expression in macrophage-like cells is required for tail regeneration in Xenopus laevis tadpoles., Deguchi M, Fukazawa T, Kubo T, Kubo T., Development. August 1, 2023; 150 (15):                       


Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions., Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J., Dev Comp Immunol. February 1, 2023; 139 104594.    


Evolution and Potential Subfunctionalization of Duplicated fms-Related Class III Receptor Tyrosine Kinase flt3s and Their Ligands in the Allotetraploid Xenopus laevis., Paiola M, Ma S, Robert J., J Immunol. September 1, 2022; 209 (5): 960-969.


A Focal Impact Model of Traumatic Brain Injury in Xenopus Tadpoles Reveals Behavioral Alterations, Neuroinflammation, and an Astroglial Response., Spruiell Eldridge SL, Teetsel JFK, Torres RA, Ulrich CH, Shah VV, Singh D, Zamora MJ, Zamora S, Sater AK., Int J Mol Sci. July 8, 2022; 23 (14):                         


The Roles of Amphibian (Xenopus laevis) Macrophages during Chronic Frog Virus 3 Infections., Hossainey MRH, Yaparla A, Hauser KA, Moore TE, Grayfer L., Viruses. November 18, 2021; 13 (11):               


Microglial trogocytosis and the complement system regulate axonal pruning in vivo., Lim TK, Ruthazer ES., Elife. March 16, 2021; 10                     


Amphibian (Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Antiviral Responses to Intestinal Frog Virus 3 Infections., Hauser KA, Singer JC, Hossainey MRH, Moore TE, Wendel ES, Yaparla A, Kalia N, Grayfer L., Front Immunol. January 1, 2021; 12 737403.                


Exploring the relationships between amphibian (Xenopus laevis) myeloid cell subsets., Yaparla A, Koubourli DV, Popovic M, Grayfer L., Dev Comp Immunol. December 1, 2020; 113 103798.


The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation., Aztekin C, Hiscock TW, Butler R, De Jesús Andino F, Robert J, Gurdon JB, Jullien J., Development. February 5, 2020; 147 (3):                                     


Colony-stimulating factor-1- and interleukin-34-derived macrophages differ in their susceptibility to Mycobacterium marinum., Popovic M, Yaparla A, Paquin-Proulx D, Koubourli DV, Webb R, Firmani M, Grayfer L., J Leukoc Biol. December 1, 2019; 106 (6): 1257-1269.


Distinct Host-Mycobacterial Pathogen Interactions between Resistant Adult and Tolerant Tadpole Life Stages of Xenopus laevis., Rhoo KH, Edholm ES, Forzán MJ, Khan A, Waddle AW, Pavelka MS, Robert J., J Immunol. November 15, 2019; 203 (10): 2679-2688.                  


The amphibian (Xenopus laevis) colony-stimulating factor-1 and interleukin-34-derived macrophages possess disparate pathogen recognition capacities., Yaparla A, Docter-Loeb H, Melnyk MLS, Batheja A, Grayfer L., Dev Comp Immunol. September 1, 2019; 98 89-97.


Myelopoiesis of the Amphibian Xenopus laevis Is Segregated to the Bone Marrow, Away From Their Hematopoietic Peripheral Liver., Yaparla A, Reeves P, Grayfer L., Front Immunol. April 4, 2019; 10 3015.              


Differentiation-dependent antiviral capacities of amphibian (Xenopus laevis) macrophages., Yaparla A, Popovic M, Grayfer L., J Biol Chem. February 2, 2018; 293 (5): 1736-1744.


The unique myelopoiesis strategy of the amphibian Xenopus laevis., Yaparla A, Wendel ES, Grayfer L., Dev Comp Immunol. October 1, 2016; 63 136-43.


Distinct functional roles of amphibian (Xenopus laevis) colony-stimulating factor-1- and interleukin-34-derived macrophages., Grayfer L, Robert J., J Leukoc Biol. October 1, 2015; 98 (4): 641-9.


Mechanisms of amphibian macrophage development: characterization of the Xenopus laevis colony-stimulating factor-1 receptor., Grayfer L, Edholm ES, Robert J., Int J Dev Biol. January 1, 2014; 58 (10-12): 757-66.              


Cells expressing FLT3/ITD mutations exhibit elevated repair errors generated through alternative NHEJ pathways: implications for genomic instability and therapy., Fan J, Li L, Small D, Rassool F., Blood. December 9, 2010; 116 (24): 5298-305.


Macrophage Wnt7b is critical for kidney repair and regeneration., Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, Pei H, Chen L, Zheng JJ, Carroll TJ, Pollard JW, McMahon AP, Lang RA, Duffield JS., Proc Natl Acad Sci U S A. March 2, 2010; 107 (9): 4194-9.      


Nuclear localization of the pre-mRNA associating protein THOC7 depends upon its direct interaction with Fms tyrosine kinase interacting protein (FMIP)., El Bounkari O, Guria A, Klebba-Faerber S, Claussen M, Pieler T, Griffiths JR, Whetton AD, Koch A, Tamura T., FEBS Lett. January 5, 2009; 583 (1): 13-8.


Use of genetic immunization to generate a high-level antibody against rat dicarboxylate transporter., Xu G, Liu A, Liu X., Int Urol Nephrol. January 1, 2009; 41 (1): 171-8.


The mother superior mutation ablates foxd3 activity in neural crest progenitor cells and depletes neural crest derivatives in zebrafish., Montero-Balaguer M, Lang MR, Sachdev SW, Knappmeyer C, Stewart RA, De La Guardia A, Hatzopoulos AK, Knapik EW., Dev Dyn. December 1, 2006; 235 (12): 3199-212.      


Development of high-specificity antibodies against renal urate transporters using genetic immunization., Xu G, Chen X, Wu D, Shi S, Wang J, Ding R, Hong Q, Feng Z, Lin S, Lu Y., J Biochem Mol Biol. November 30, 2006; 39 (6): 696-702.


Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis., Gong Y, Krakow D, Marcelino J, Wilkin D, Chitayat D, Babul-Hirji R, Hudgins L, Cremers CW, Cremers FP, Brunner HG, Reinker K, Rimoin DL, Cohn DH, Goodman FR, Reardon W, Patton M, Francomano CA, Warman ML., Nat Genet. March 1, 1999; 21 (3): 302-4.


Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium., Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT., Proc Natl Acad Sci U S A. August 15, 1993; 90 (16): 7533-7.


The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor., de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT., Science. February 21, 1992; 255 (5047): 989-91.


Detection of proto-oncogenes in the genome of the amphibian Xenopus laevis., Moreau J, Le Guellec R, Leibovici M, Couturier A, Philippe M, Mechali M., Oncogene. April 1, 1989; 4 (4): 443-9.

???pagination.result.page??? 1