Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (39) GO Terms (0) Nucleotides (235) Proteins (18) Interactants (255) Wiki
XB-GENEPAGE-6456569

Papers associated with crygdl.43



???displayGene.coCitedPapers???
1 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Molecular functions of the double-sided and inverted ubiquitin-interacting motif found in Xenopus tropicalis cryptochrome 6., Okano K, Otsuka H, Nakagawa M, Okano T., Dev Growth Differ. May 1, 2023;               


Patterns of tubb2b Promoter-Driven Fluorescence in the Forebrain of Larval Xenopus laevis., Daume D, Offner T, Hassenklöver T, Manzini I., Front Neuroanat. January 1, 2022; 16 914281.          


Evolution of casein kinase 1 and functional analysis of new doubletime mutants in Drosophila., Thakkar N, Giesecke A, Bazalova O, Martinek J, Smykal V, Stanewsky R, Dolezel D., Front Physiol. January 1, 2022; 13 1062632.                


Function and Role of ATP-Binding Cassette Transporters as Receptors for 3D-Cry Toxins., Sato R, Adegawa S, Li X, Tanaka S, Endo H., Toxins (Basel). February 19, 2019; 11 (2):       


Coulomb and CH-π interactions in (6-4) photolyase-DNA complex dominate DNA binding and repair abilities., Terai Y, Sato R, Yumiba T, Harada R, Shimizu K, Toga T, Ishikawa-Fujiwara T, Todo T, Iwai S, Shigeta Y, Yamamoto J., Nucleic Acids Res. July 27, 2018; 46 (13): 6761-6772.              


Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis., Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 301-324.                          


Probing forebrain to hindbrain circuit functions in Xenopus., Kelley DB, Elliott TM, Evans BJ, Hall IC, Leininger EC, Rhodes HJ, Yamaguchi A, Zornik E., Genesis. January 1, 2017; 55 (1-2):           


Functional characterization of Bacillus thuringiensis Cry toxin receptors explains resistance in insects., Tanaka S, Endo H, Adegawa S, Kikuta S, Sato R., FEBS J. December 1, 2016; 283 (24): 4474-4490.


Effects of Transgenic cry1Ca Rice on the Development of Xenopus laevis., Chen X, Wang J, Zhu H, Li Y, Ding J, Peng Y., PLoS One. January 1, 2015; 10 (12): e0145412.      


Identification and characterization of cryptochrome4 in the ovary of western clawed frog Xenopus tropicalis., Takeuchi T, Kubo Y, Okano K, Okano T., Zoolog Sci. March 1, 2014; 31 (3): 152-9.


Early appearance of nonvisual and circadian markers in the developing inner retinal cells of chicken., Díaz NM, Morera LP, Verra DM, Contin MA, Guido ME., Biomed Res Int. January 1, 2014; 2014 646847.        


Interrogating transcriptional regulatory sequences in Tol2-mediated Xenopus transgenics., Loots GG, Bergmann A, Hum NR, Oldenburg CE, Wills AE, Hu N, Ovcharenko I, Harland RM., PLoS One. July 1, 2013; 8 (7): e68548.          


Cartilage on the move: cartilage lineage tracing during tadpole metamorphosis., Kerney RR, Brittain AL, Hall BK, Buchholz DR., Dev Growth Differ. October 1, 2012; 54 (8): 739-52.                      


An APC/C inhibitor stabilizes cyclin B1 by prematurely terminating ubiquitination., Zeng X, King RW., Nat Chem Biol. February 26, 2012; 8 (4): 383-92.            


SmSak, the second Polo-like kinase of the helminth parasite Schistosoma mansoni: conserved and unexpected roles in meiosis., Long T, Vanderstraete M, Cailliau K, Morel M, Lescuyer A, Gouignard N, Grevelding CG, Browaeys E, Dissous C., PLoS One. January 1, 2012; 7 (6): e40045.              


New doxycycline-inducible transgenic lines in Xenopus., Rankin SA, Rankin SA, Zorn AM, Buchholz DR., Dev Dyn. June 1, 2011; 240 (6): 1467-74.        


Cep152 interacts with Plk4 and is required for centriole duplication., Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T., J Cell Biol. November 15, 2010; 191 (4): 721-9.          


Cryptochrome genes are highly expressed in the ovary of the African clawed frog, Xenopus tropicalis., Kubo Y, Takeuchi T, Okano K, Okano T., PLoS One. February 2, 2010; 5 (2): e9273.        


Xhairy2 functions in Xenopus lens development by regulating p27(xic1) expression., Murato Y, Hashimoto C., Dev Dyn. September 1, 2009; 238 (9): 2179-92.              


Gene expression profiles of lens regeneration and development in Xenopus laevis., Malloch EL, Perry KJ, Fukui L, Johnson VR, Wever J, Beck CW, King MW, King MW, Henry JJ., Dev Dyn. September 1, 2009; 238 (9): 2340-56.                                    


Improved cre reporter transgenic Xenopus., Rankin SA, Rankin SA, Hasebe T, Zorn AM, Buchholz DR., Dev Dyn. September 1, 2009; 238 (9): 2401-8.          


The lens-regenerating competence in the outer cornea and epidermis of larval Xenopus laevis is related to pax6 expression., Gargioli C, Giambra V, Santoni S, Bernardini S, Frezza D, Filoni S, Cannata SM., J Anat. May 1, 2008; 212 (5): 612-20.


Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification., Ogino H, Fisher M, Grainger RM., Development. January 1, 2008; 135 (2): 249-58.          


Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina., Yoshii C, Ueda Y, Okamoto M, Araki M., Dev Biol. March 1, 2007; 303 (1): 45-56.                    


Structure/function analysis of Xenopus cryptochromes 1 and 2 reveals differential nuclear localization mechanisms and functional domains important for interaction with and repression of CLOCK-BMAL1., van der Schalie EA, Conte FE, Marz KE, Green CB., Mol Cell Biol. March 1, 2007; 27 (6): 2120-9.


Neuronal leucine-rich repeat 6 (XlNLRR-6) is required for late lens and retina development in Xenopus laevis., Wolfe AD, Henry JJ., Dev Dyn. April 1, 2006; 235 (4): 1027-41.          


Nuclear import of mPER3 in Xenopus oocytes and HeLa cells requires complex formation with mPER1., Loop S, Pieler T., FEBS J. July 1, 2005; 272 (14): 3714-24.


Identification of cryptochrome DASH from vertebrates., Daiyasu H, Ishikawa T, Kuma K, Iwai S, Todo T, Toh H., Genes Cells. May 1, 2004; 9 (5): 479-95.


Nuclear localization and transcriptional repression are confined to separable domains in the circadian protein CRYPTOCHROME., Zhu H, Conte F, Green CB., Curr Biol. September 16, 2003; 13 (18): 1653-8.


Characterizing gene expression during lens formation in Xenopus laevis: evaluating the model for embryonic lens induction., Henry JJ, Carinato ME, Schaefer JJ, Wolfe AD, Walter BE, Perry KJ, Elbl TN., Dev Dyn. June 1, 2002; 224 (2): 168-85.        


Nuclear export of mammalian PERIOD proteins., Vielhaber EL, Duricka D, Ullman KS, Virshup DM., J Biol Chem. December 7, 2001; 276 (49): 45921-7.


Three cryptochromes are rhythmically expressed in Xenopus laevis retinal photoreceptors., Zhu H, Green CB., Mol Vis. August 29, 2001; 7 210-5.  


Dissecting GHRH- and pituitary adenylate cyclase activating polypeptide-mediated signalling in Xenopus., Otto C, Schütz G, Niehrs C, Glinka A., Mech Dev. June 1, 2000; 94 (1-2): 111-6.        


A novel fork head gene mediates early steps during Xenopus lens formation., Kenyon KL, Moody SA, Jamrich M., Development. November 1, 1999; 126 (22): 5107-16.            


Conservation of gene expression during embryonic lens formation and cornea-lens transdifferentiation in Xenopus laevis., Schaefer JJ, Oliver G, Henry JJ., Dev Dyn. August 1, 1999; 215 (4): 308-18.        


Characterization of Xenopus laevis gamma-crystallin-encoding genes., Smolich BD, Tarkington SK, Saha MS, Stathakis DG, Grainger RM., Gene. June 30, 1993; 128 (2): 189-95.


Immunological studies on gamma crystallins from Xenopus: localization, tissue specificity and developmental expression of proteins., Shastry BS., Exp Eye Res. September 1, 1989; 49 (3): 361-9.      


Embryonic appearance of alpha, beta, and gamma crystallins in the periodic albinism (ap) mutant of Xenopus laevis., McDevitt DS, Brahma SK., Differentiation. January 1, 1979; 14 (1-2): 107-12.        


Biochemical changes in developmentally retarded Xenopus laevis larvae. I. The lens crystallin transition., Doyle MJ, Maclean N., J Embryol Exp Morphol. August 1, 1978; 46 215-25.

???pagination.result.page??? 1