Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (26) GO Terms (2) Nucleotides (91) Proteins (46) Interactants (80) Wiki
XB-GENEPAGE-921720

Papers associated with slc2a3



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Functional Expression of the Human Glucose Transporters GLUT2 and GLUT3 in Yeast Offers Novel Screening Systems for GLUT-Targeting Drugs., Schmidl S, Tamayo Rojas SA, Iancu CV, Choe JY, Oreb M., Front Mol Biosci. February 18, 2021; 7 598419.


Structural comparison of GLUT1 to GLUT3 reveal transport regulation mechanism in sugar porter family., Custódio TF, Paulsen PA, Frain KM, Pedersen BP., Life Sci Alliance. February 3, 2021; 4 (4):             


The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation., Aztekin C, Hiscock TW, Butler R, De Jesús Andino F, Robert J, Gurdon JB, Jullien J., Development. February 5, 2020; 147 (3):                                     


Functional and structural analysis of rare SLC2A2 variants associated with Fanconi-Bickel syndrome and metabolic traits., Enogieru OJ, Ung PMU, Yee SW, Schlessinger A, Giacomini KM., Hum Mutat. July 1, 2019; 40 (7): 983-995.


The SLC2A14 gene, encoding the novel glucose/dehydroascorbate transporter GLUT14, is associated with inflammatory bowel disease., Amir Shaghaghi M, Zhouyao H, Tu H, El-Gabalawy H, Crow GH, Levine M, Bernstein CN, Eck P., Am J Clin Nutr. December 1, 2017; 106 (6): 1508-1513.


Membrane-traversing mechanism of thyroid hormone transport by monocarboxylate transporter 8., Protze J, Braun D, Hinz KM, Bayer-Kusch D, Schweizer U, Krause G., Cell Mol Life Sci. June 1, 2017; 74 (12): 2299-2318.


Cloning, characterization, and expression of glucose transporter 2 in the freeze-tolerant wood frog, Rana sylvatica., Rosendale AJ, Philip BN, Lee RE, Costanzo JP., Biochim Biophys Acta. June 1, 2014; 1840 (6): 1701-11.              


On the origin and evolutionary history of NANOG., Scerbo P, Markov GV, Vivien C, Kodjabachian L, Demeneix B, Coen L, Girardot F., PLoS One. January 17, 2014; 9 (1): e85104.    


Carbohydrate metabolism during vertebrate appendage regeneration: what is its role? How is it regulated?: A postulation that regenerating vertebrate appendages facilitate glycolytic and pentose phosphate pathways to fuel macromolecule biosynthesis., Love NR, Ziegler M, Chen Y, Amaya E., Bioessays. January 1, 2014; 36 (1): 27-33.    


Pentobarbital inhibits glucose uptake, but not water transport by glucose transporter type 3., Tomioka S, Kaneko M, Nakajo N., Neuroreport. August 1, 2012; 23 (11): 687-91.


Water transport by glucose transporter type 3 expressed in Xenopus oocytes., Tomioka S., Neuroreport. January 4, 2012; 23 (1): 21-5.


Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C., Tomioka S, Kaneko M, Satomura K, Mikyu T, Nakajo N., Biochem Biophys Res Commun. October 9, 2009; 388 (1): 141-5.


6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways., Corpe CP, Lee JH, Lee JH, Kwon O, Eck P, Narayanan J, Kirk KL, Levine M., J Biol Chem. February 18, 2005; 280 (7): 5211-20.


Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations., Murata H, Hruz PW, Mueckler M., AIDS. April 12, 2002; 16 (6): 859-63.


Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes., Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M., J Biol Chem. September 8, 2000; 275 (36): 28246-53.


Specificity of ascorbate analogs for ascorbate transport. Synthesis and detection of [(125)I]6-deoxy-6-iodo-L-ascorbic acid and characterization of its ascorbate-specific transport properties., Rumsey SC, Welch RW, Garraffo HM, Ge P, Lu SF, Crossman AT, Kirk KL, Levine M., J Biol Chem. August 13, 1999; 274 (33): 23215-22.


Different functional domains of GLUT2 glucose transporter are required for glucose affinity and substrate specificity., Wu L, Fritz JD, Powers AC., Endocrinology. October 1, 1998; 139 (10): 4205-12.


Characterization of GLUT5 domains responsible for fructose transport., Buchs AE, Sasson S, Joost HG, Cerasi E., Endocrinology. March 1, 1998; 139 (3): 827-31.


QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site., Seatter MJ, De la Rue SA, Porter LM, Gould GW., Biochemistry. February 3, 1998; 37 (5): 1322-6.


Structure-function studies of the brain-type glucose transporter, GLUT3: alanine-scanning mutagenesis of putative transmembrane helix 8., Seatter MJ, Kane S, Porter LM, Gould GW., Biochem Soc Trans. August 1, 1997; 25 (3): 474S.


Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid., Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M., J Biol Chem. July 25, 1997; 272 (30): 18982-9.


Structure-function studies of the brain-type glucose transporter, GLUT3: alanine-scanning mutagenesis of putative transmembrane helix VIII and an investigation of the role of proline residues in transport catalysis., Seatter MJ, Kane S, Porter LM, Arbuckle MI, Melvin DR, Gould GW., Biochemistry. May 27, 1997; 36 (21): 6401-7.


Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity., Arbuckle MI, Kane S, Porter LM, Seatter MJ, Gould GW., Biochemistry. December 24, 1996; 35 (51): 16519-27.


Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors., Colville CA, Seatter MJ, Jess TJ, Gould GW, Thomas HM., Biochem J. March 15, 1993; 290 ( Pt 3) 701-6.


Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins., Burant CF, Bell GI., Biochemistry. October 27, 1992; 31 (42): 10414-20.


Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6)., Kayano T, Burant CF, Fukumoto H, Gould GW, Fan YS, Eddy RL, Byers MG, Shows TB, Seino S, Bell GI., J Biol Chem. August 5, 1990; 265 (22): 13276-82.

???pagination.result.page??? 1