Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (47) GO Terms (8) Nucleotides (157) Proteins (49) Interactants (112) Wiki

Papers associated with ntrk2

Search for ntrk2 morpholinos using Textpresso

Limit to papers also referencing gene:
2 paper(s) referencing morpholinos

Results 1 - 47 of 47 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

The trkB tyrosine protein kinase is a receptor for neurotrophin-4., Klein R, Lamballe F, Bryant S, Barbacid M., Neuron. May 1, 1992; 8 (5): 947-56.

Function and evolution in the NGF family and its receptors., Ebendal T., J Neurosci Res. August 1, 1992; 32 (4): 461-70.

Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells., Ip NY, Stitt TN, Tapley P, Klein R, Glass DJ, Fandl J, Greene LA, Barbacid M, Yancopoulos GD., Neuron. February 1, 1993; 10 (2): 137-49.

BDNF in the development of the visual system of Xenopus., Cohen-Cory S, Fraser SE., Neuron. April 1, 1994; 12 (4): 747-61.

Role of variable beta-hairpin loop in determining biological specificities in neurotrophin family., Ilag LL, Lönnerberg P, Persson H, Ibáñez CF., J Biol Chem. August 5, 1994; 269 (31): 19941-6.

Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 bind to a single leucine-rich motif of TrkB., Windisch JM, Marksteiner R, Lang ME, Auer B, Schneider R., Biochemistry. September 5, 1995; 34 (35): 11256-63.

Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling., Eide FF, Vining ER, Eide BL, Zang K, Wang XY, Reichardt LF., J Neurosci. May 15, 1996; 16 (10): 3123-9.          

Catalytic and non-catalytic forms of the neurotrophin receptor xTrkB mRNA are expressed in a pseudo-segmental manner within the early Xenopus central nervous system., Islam N, Gagnon F, Moss T., Int J Dev Biol. October 1, 1996; 40 (5): 973-83.        

The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S, Escandón E, Fraser SE., Dev Biol. October 10, 1996; 179 (1): 102-15.              

Brain-derived neurotrophic factor/neurotrophin-4 receptor TrkB is localized on ganglion cells and dopaminergic amacrine cells in the vertebrate retina., Cellerino A, Kohler K., J Comp Neurol. September 15, 1997; 386 (1): 149-60.

Potentiation of developing synapses by postsynaptic release of neurotrophin-4., Wang XH, Poo MM., Neuron. October 1, 1997; 19 (4): 825-35.

Critical role of TrkB and brain-derived neurotrophic factor in the differentiation and survival of retinal pigment epithelium., Liu ZZ, Zhu LQ, Eide FF., J Neurosci. November 15, 1997; 17 (22): 8749-55.          

Expression of brain-derived neurotrophic factor and its receptor mRNA in the vestibuloauditory system of the bullfrog., Don DM, Newman AN, Micevych PE, Popper P., Hear Res. December 1, 1997; 114 (1-2): 10-20.        

Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo., Lom B, Cohen-Cory S., J Neurosci. November 15, 1999; 19 (22): 9928-38.

BDNF-Induced potentiation of spontaneous twitching in innervated myocytes requires calcium release from intracellular stores., Kleiman RJ, Tian N, Krizaj D, Hwang TN, Copenhagen DR, Reichardt LF., J Neurophysiol. July 1, 2000; 84 (1): 472-83.

TrkB activation by brain-derived neurotrophic factor inhibits the G protein-gated inward rectifier Kir3 by tyrosine phosphorylation of the channel., Rogalski SL, Appleyard SM, Pattillo A, Terman GW, Chavkin C., J Biol Chem. August 18, 2000; 275 (33): 25082-8.

Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel., Tong Y, Brandt GS, Li M, Shapovalov G, Slimko E, Karschin A, Dougherty DA, Lester HA., J Gen Physiol. February 1, 2001; 117 (2): 103-18.                

N-terminal tyrosine residues within the potassium channel Kir3 modulate GTPase activity of Galphai., Ippolito DL, Temkin PA, Rogalski SL, Chavkin C., J Biol Chem. September 6, 2002; 277 (36): 32692-6.

Localized synaptic potentiation by BDNF requires local protein synthesis in the developing axon., Zhang Xh, Poo MM., Neuron. November 14, 2002; 36 (4): 675-88.

Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability., Kanning KC, Hudson M, Amieux PS, Wiley JC, Bothwell M, Schecterson LC., J Neurosci. July 2, 2003; 23 (13): 5425-36.

Ca2+ influx-independent synaptic potentiation mediated by mitochondrial Na(+)-Ca2+ exchanger and protein kinase C., Yang F, He XP, Russell J, Lu B., J Cell Biol. November 10, 2003; 163 (3): 511-23.                    

Neurotrophin-independent attraction of growing sensory and motor axons towards developing Xenopus limb buds in vitro., Tonge DA, Pountney DJ, Leclere PG, Zhu N, Pizzey JA., Dev Biol. January 1, 2004; 265 (1): 169-80.                

Neurotrophin receptors and enteric neuronal development during metamorphosis in the amphibian Xenopus laevis., Sundqvist M, Holmgren S., Cell Tissue Res. April 1, 2004; 316 (1): 45-54.

Rapid BDNF-induced retrograde synaptic modification in a developing retinotectal system., Du JL, Poo MM., Nature. June 24, 2004; 429 (6994): 878-83.

Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity., Marshak S, Nikolakopoulou AM, Dirks R, Martens GJ, Cohen-Cory S., J Neurosci. March 7, 2007; 27 (10): 2444-56.

Heterosynaptic scaling of developing GABAergic synapses: dependence on glutamatergic input and developmental stage., Liu Y, Zhang LI, Tao HW., J Neurosci. May 16, 2007; 27 (20): 5301-12.

Antagonistic effects of TrkB and p75(NTR) on NMDA receptor currents in post-synaptic densities transplanted into Xenopus oocytes., Sandoval M, Sandoval R, Thomas U, Spilker C, Smalla KH, Falcon R, Marengo JJ, Calderón R, Saavedra V, Heumann R, Bronfman F, Garner CC, Gundelfinger ED, Wyneken U., J Neurochem. June 1, 2007; 101 (6): 1672-84.

Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis., Kidane AH, van Dooren SH, Roubos EW, Jenks BG., Gen Comp Endocrinol. August 1, 2007; 153 (1-3): 176-81.      

Long-range retrograde spread of LTP and LTD from optic tectum to retina., Du JL, Wei HP, Wang ZR, Wong ST, Poo MM., Proc Natl Acad Sci U S A. November 10, 2009; 106 (45): 18890-6.

About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJ, Kozicz T., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      

Functional consequences of the interactions among the neural cell adhesion molecule NCAM, the receptor tyrosine kinase TrkB, and the inwardly rectifying K+ channel KIR3.3., Kleene R, Cassens C, Bähring R, Theis T, Xiao MF, Dityatev A, Schafer-Nielsen C, Döring F, Wischmeyer E, Schachner M., J Biol Chem. September 10, 2010; 285 (37): 28968-79.

Characterisation of a new regulator of BDNF signalling, Sprouty3, involved in axonal morphogenesis in vivo., Panagiotaki N, Dajas-Bailador F, Amaya E, Papalopulu N, Dorey K., Development. December 1, 2010; 137 (23): 4005-15.                                      

Brain-derived neurotrophic factor stimulates growth of pituitary melanotrope cells in an autocrine way., Kuribara M, Hess MW, Cazorla M, Roubos EW, Scheenen WJ, Jenks BG., Gen Comp Endocrinol. January 1, 2011; 170 (1): 156-61.          

Mechanism of acetylcholine receptor cluster formation induced by DC electric field., Zhang HL, Peng HB., PLoS One. January 1, 2011; 6 (10): e26805.                    

Postsynaptic TRPC1 function contributes to BDNF-induced synaptic potentiation at the developing neuromuscular junction., McGurk JS, Shim S, Kim JY, Wen Z, Song H, Ming GL., J Neurosci. October 12, 2011; 31 (41): 14754-62.                

Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth., Carlstrom LP, Hines JH, Henle SJ, Henley JR., BMC Biol. November 30, 2011; 9 82.              

Gene expression profiling of pituitary melanotrope cells during their physiological activation., Kuribara M, van Bakel NH, Ramekers D, de Gouw D, Neijts R, Roubos EW, Scheenen WJ, Martens GJ, Jenks BG., J Cell Physiol. January 1, 2012; 227 (1): 288-96.

Reciprocal regulation of axonal Filopodia and outgrowth during neuromuscular junction development., Li PP, Zhou JJ, Meng M, Madhavan R, Peng HB., PLoS One. January 1, 2012; 7 (9): e44759.              

The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis., Jenks BG, Kuribara M, Kidane AH, Kramer BM, Roubos EW, Scheenen WJ., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.      

Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses., Je HS, Yang F, Ji Y, Nagappan G, Hempstead BL, Lu B., Proc Natl Acad Sci U S A. September 25, 2012; 109 (39): 15924-9.

Non-cell-autonomous mechanism of activity-dependent neurotransmitter switching., Guemez-Gamboa A, Xu L, Meng D, Spitzer NC., Neuron. June 4, 2014; 82 (5): 1004-16.

Brain-derived neurotrophic factor inhibits neuromuscular junction maturation in a cAMP-PKA-dependent way., Song W, Jin XA., Neurosci Lett. March 30, 2015; 591 8-12.

Impact of maternal n-3 polyunsaturated fatty acid deficiency on dendritic arbor morphology and connectivity of developing Xenopus laevis central neurons in vivo., Igarashi M, Santos RA, Cohen-Cory S., J Neurosci. April 15, 2015; 35 (15): 6079-92.

Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties., Gordy C, Straka H, Houston DW, Fritzsch B, Elliott KL., Dev Neurobiol. January 1, 2018; 78 (11): 1064-1080.                  

Prdm12 Directs Nociceptive Sensory Neuron Development by Regulating the Expression of the NGF Receptor TrkA., Desiderio S, Vermeiren S, Van Campenhout C, Kricha S, Malki E, Richts S, Fletcher EV, Vanwelden T, Schmidt BZ, Henningfeld KA, Pieler T, Woods CG, Nagy V, Verfaillie C, Bellefroid EJ., Cell Rep. January 1, 2019; 26 (13): 3522-3536.e5.                  

A Generalizable Optogenetic Strategy to Regulate Receptor Tyrosine Kinases during Vertebrate Embryonic Development., Krishnamurthy VV, Fu J, Oh TJ, Khamo J, Yang J, Zhang K., J Mol Biol. January 1, 2020; 432 (10): 3149-3158.

Role of TrkA signaling during tadpole tail regeneration and early embryonic development in Xenopus laevis., Iimura A, Nishida E, Kusakabe M., Genes Cells. February 1, 2020; 25 (2): 86-99.                

Page(s): 1