Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (77) GO Terms (15) Nucleotides (259) Proteins (49) Interactants (949) Wiki
XB-GENEPAGE-951658

Papers associated with cdh2



???displayGene.coCitedPapers???
10 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives., Griffin C, Saint-Jeannet JP., Dev Biol. February 1, 2024; 506 20-30.


The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs., Herchenröther A, Gossen S, Friedrich T, Reim A, Daus N, Diegmüller F, Leers J, Sani HM, Gerstner S, Schwarz L, Stellmacher I, Szymkowiak LV, Nist A, Stiewe T, Borggrefe T, Mann M, Mackay JP, Bartkuhn M, Borchers A, Lan J, Hake SB., Nat Commun. January 28, 2023; 14 (1): 472.                                                    


Global analysis of cell behavior and protein dynamics reveals region-specific roles for Shroom3 and N-cadherin during neural tube closure., Baldwin AT, Kim JH, Seo H, Wallingford JB., Elife. March 4, 2022; 11                                   


Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1., Almasoudi SH, Schlosser G., Front Neuroanat. January 1, 2021; 15 722374.                                                    


Non-junctional role of Cadherin3 in cell migration and contact inhibition of locomotion via domain-dependent, opposing regulation of Rac1., Ichikawa T, Stuckenholz C, Davidson LA, Davidson LA., Sci Rep. October 15, 2020; 10 (1): 17326.          


The transcription factor Hypermethylated in Cancer 1 (Hic1) regulates neural crest migration via interaction with Wnt signaling., Ray H, Chang C., Dev Biol. July 15, 2020; 463 (2): 169-181.                


Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs., Sonam S, Srnak JA, Perry KJ, Henry JJ., Exp Eye Res. July 1, 2019; 184 107-125.                        


PDGF-B: The missing piece in the mosaic of PDGF family role in craniofacial development., Corsinovi D, Giannetti K, Cericola A, Naef V, Ori M., Dev Dyn. July 1, 2019; 248 (7): 603-612.            


Opposite T3 Response of ACTG1-FOS Subnetwork Differentiate Tailfin Fate in Xenopus Tadpole and Post-hatching Axolotl., Kerdivel G, Blugeon C, Fund C, Rigolet M, Sachs LM, Buisine N., Front Endocrinol (Lausanne). January 25, 2019; 10 194.              


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S, Vega-López GA, Palacio MB, Tríbulo C, Aybar MJ, Aybar MJ., Mech Dev. December 1, 2018; 154 219-239.                      


Developmental gene expression patterns in the brain and liver of Xenopus tropicalis during metamorphosis climax., Yaoita Y, Nakajima K., Genes Cells. December 1, 2018; 23 (12): 998-1008.              


The neural border: Induction, specification and maturation of the territory that generates neural crest cells., Pla P, Monsoro-Burq AH., Dev Biol. December 1, 2018; 444 Suppl 1 S36-S46.    


The Ric-8A/Gα13/FAK signalling cascade controls focal adhesion formation during neural crest cell migration in Xenopus., Toro-Tapia G, Villaseca S, Beyer A, Roycroft A, Marcellini S, Mayor R, Torrejón M., Development. November 21, 2018; 145 (22):                               


MMP14 Regulates Cranial Neural Crest Epithelial-to-Mesenchymal Transition and Migration., Garmon T, Wittling M, Nie S., Dev Dyn. September 1, 2018; 247 (9): 1083-1092.            


Redistribution of Adhesive Forces through Src/FAK Drives Contact Inhibition of Locomotion in Neural Crest., Roycroft A, Szabó A, Bahm I, Daly L, Charras G, Parsons M, Mayor R., Dev Cell. June 4, 2018; 45 (5): 565-579.e3.                                        


Cadherins function during the collective cell migration of Xenopus Cranial Neural Crest cells: revisiting the role of E-cadherin., Cousin H., Mech Dev. December 1, 2017; 148 79-88.    


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL, Maczkowiak F, Borday C, Pla P, Sittewelle M, Pegoraro C, Monsoro-Burq AH., Development. November 15, 2017; 144 (22): 4183-4194.                                


Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration., Simon E, Thézé N, Fédou S, Thiébaud P, Faucheux C., Biol Open. October 15, 2017; 6 (10): 1528-1540.                                  


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z, Lei A, Xu L, Chen L, Chen Y, Chen Y, Zhang X, Gao Y, Yang X, Zhang M, Cao Y, Cao Y., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure., Suzuki M, Sato M, Koyama H, Hara Y, Hayashi K, Yasue N, Imamura H, Fujimori T, Nagai T, Campbell RE, Ueno N., Development. April 1, 2017; 144 (7): 1307-1316.                            


Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex., Martinez-Garay I, Gil-Sanz C, Franco SJ, Espinosa A, Molnár Z, Mueller U., Development. June 15, 2016; 143 (12): 2121-34.                


Elongator Protein 3 (Elp3) stabilizes Snail1 and regulates neural crest migration in Xenopus., Yang X, Li J, Zeng W, Li C, Mao B., Sci Rep. May 18, 2016; 6 26238.            


E-cadherin is required for cranial neural crest migration in Xenopus laevis., Huang C, Kratzer MC, Wedlich D, Kashef J., Dev Biol. March 15, 2016; 411 (2): 159-171.                        


Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces., Scarpa E, Szabó A, Bibonne A, Theveneau E, Parsons M, Mayor R., Dev Cell. August 24, 2015; 34 (4): 421-34.                                            


Predicting Variabilities in Cardiac Gene Expression with a Boolean Network Incorporating Uncertainty., Grieb M, Burkovski A, Sträng JE, Kraus JM, Groß A, Palm G, Kühl M, Kestler HA., PLoS One. July 16, 2015; 10 (7): e0131832.        


DIPA-family coiled-coils bind conserved isoform-specific head domain of p120-catenin family: potential roles in hydrocephalus and heterotopia., Markham NO, Doll CA, Dohn MR, Miller RK, Yu H, Coffey RJ, McCrea PD, Gamse JT, Reynolds AB., Mol Biol Cell. September 1, 2014; 25 (17): 2592-603.          


Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions., Vandenberg LN, Blackiston DJ, Rea AC, Dore TM, Levin M., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.                


Role of the hypoxia response pathway in lens formation during embryonic development of Xenopus laevis., Baba K, Muraguchi T, Imaoka S., FEBS Open Bio. October 23, 2013; 3 490-5.        


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C, Maczkowiak F, Roche DD, Monsoro-Burq AH., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions., Prasad MS, Sauka-Spengler T, LaBonne C., Dev Biol. June 1, 2012; 366 (1): 10-21.


Cell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in Xenopus., Morita H, Kajiura-Kobayashi H, Takagi C, Yamamoto TS, Nonaka S, Ueno N., Development. April 1, 2012; 139 (8): 1417-26.                        


Activation of voltage gated K⁺ channel Kv1.5 by β-catenin., Munoz C, Tóvolli RH, Sopjani M, Alesutan I, Lam RS, Seebohm G, Föller M, Lang F., Biochem Biophys Res Commun. January 13, 2012; 417 (2): 692-6.


CRIM1 complexes with ß-catenin and cadherins, stabilizes cell-cell junctions and is critical for neural morphogenesis., Ponferrada VG, Fan J, Vallance JE, Hu S, Mamedova A, Rankin SA, Kofron M, Zorn AM, Hegde RS, Lang RA., PLoS One. January 1, 2012; 7 (3): e32635.                        


Regulation of classical cadherin membrane expression and F-actin assembly by alpha-catenins, during Xenopus embryogenesis., Nandadasa S, Tao Q, Tao Q, Shoemaker A, Cha SW, Wylie C., PLoS One. January 1, 2012; 7 (6): e38756.                      


Stimulation of HERG channel activity by β-catenin., Munoz C, Saxena A, Pakladok T, Bogatikov E, Wilmes J, Seebohm G, Föller M, Lang F., PLoS One. January 1, 2012; 7 (8): e43353.          


Complement fragment C3a controls mutual cell attraction during collective cell migration., Carmona-Fontaine C, Theveneau E, Tzekou A, Tada M, Woods M, Page KM, Parsons M, Lambris JD, Mayor R., Dev Cell. December 13, 2011; 21 (6): 1026-37.                


IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-β1 resulting in epithelial to mesenchymal transition., Walsh LA, Damjanovski S., Cell Commun Signal. May 2, 2011; 9 (1): 10.            


Lhx1 is required for specification of the renal progenitor cell field., Cirio MC, Hui Z, Haldin CE, Cosentino CC, Stuckenholz C, Chen X, Hong SK, Dawid IB, Hukriede NA., PLoS One. April 15, 2011; 6 (4): e18858.                          


SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos., Wu MY, Ramel MC, Howell M, Hill CS., PLoS Biol. February 15, 2011; 9 (2): e1000593.                              


β-catenin is a molecular switch that regulates transition of cell-cell adhesion to fusion., Takezawa Y, Yoshida K, Miyado K, Sato M, Nakamura A, Kawano N, Sakakibara K, Kondo T, Harada Y, Ohnami N, Kanai S, Miyado M, Saito H, Takahashi Y, Akutsu H, Umezawa A., Sci Rep. January 1, 2011; 1 68.          


Retinal patterning by Pax6-dependent cell adhesion molecules., Rungger-Brändle E, Ripperger JA, Steiner K, Conti A, Stieger A, Soltanieh S, Rungger D., Dev Neurobiol. September 15, 2010; 70 (11): 764-80.                


Collective chemotaxis requires contact-dependent cell polarity., Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, Mayor R., Dev Cell. July 20, 2010; 19 (1): 39-53.                


MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization., Suzuki M, Hara Y, Takagi C, Yamamoto TS, Ueno N., Development. July 1, 2010; 137 (14): 2329-39.                                                      


Nectin-2 and N-cadherin interact through extracellular domains and induce apical accumulation of F-actin in apical constriction of Xenopus neural tube morphogenesis., Morita H, Nandadasa S, Yamamoto TS, Terasaka-Iioka C, Wylie C, Ueno N., Development. April 1, 2010; 137 (8): 1315-25.                            


Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases., Gu D, Sater AK, Ji H, Cho K, Clark M, Stratton SA, Barton MC, Lu Q, McCrea PD., J Cell Sci. November 15, 2009; 122 (Pt 22): 4049-61.            


Stepwise maturation of apicobasal polarity of the neuroepithelium is essential for vertebrate neurulation., Yang X, Zou J, Hyde DR, Davidson LA, Wei X., J Neurosci. September 16, 2009; 29 (37): 11426-40.  


N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements., Nandadasa S, Tao Q, Menon NR, Heasman J, Wylie C., Development. April 1, 2009; 136 (8): 1327-38.                      


Biophysical properties of cadherin bonds do not predict cell sorting., Shi Q, Chien YH, Leckband D., J Biol Chem. October 17, 2008; 283 (42): 28454-63.


Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL., Chitalia VC, Foy RL, Bachschmid MM, Zeng L, Panchenko MV, Zhou MI, Bharti A, Seldin DC, Lecker SH, Dominguez I, Cohen HT., Nat Cell Biol. October 1, 2008; 10 (10): 1208-16.        


A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration., Bard L, Boscher C, Lambert M, Mège RM, Choquet D, Thoumine O., J Neurosci. June 4, 2008; 28 (23): 5879-90.

???pagination.result.page??? 1 2 ???pagination.result.next???