Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (41) GO Terms (12) Nucleotides (355) Proteins (85) Interactants (614) Wiki
XB--956214

Papers associated with ezh2



???displayGene.coCitedPapers???
3 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Mutations in the histone methyltransferase Ezh2 drive context-dependent leukemia in Xenopus tropicalis., Tulkens D, Boelens M, Naert T, Carron M, Demuynck S, Dewaele S, Van Isterdael G, Creytens D, Pieters T, Goossens S, Van Vlierberghe P, Vleminckx K., Leukemia. December 1, 2023; 37 (12): 2404-2413.


Evolutionarily distinct and sperm-specific supersized chromatin loops are marked by Helitron transposons in Xenopus tropicalis., Shi Z, Xu J, Niu L, Shen W, Yan S, Tan Y, Quan X, Cheung E, Huang K, Chen Y, Chen Y, Li L, Hou C., Cell Rep. March 28, 2023; 42 (3): 112151.                              


Chromatin accessibility analysis reveals distinct functions for HDAC and EZH2 activities in early appendage regeneration., Arbach HE, Harland-Dunaway M, Braden C, Chitsazan AD, Pickering E, Patel JH, Wills AE., Wound Repair Regen. November 1, 2022; 30 (6): 707-725.                        


Engagement of Foxh1 in chromatin regulation revealed by protein interactome analyses., Zhou JJ, Pham PD, Han H, Wang W, Cho KWY., Dev Growth Differ. August 1, 2022; 64 (6): 297-305.      


Developmental and Injury-induced Changes in DNA Methylation in Regenerative versus Non-regenerative Regions of the Vertebrate Central Nervous System., Reverdatto S, Prasad A, Belrose JL, Zhang X, Sammons MA, Gibbs KM, Szaro BG., BMC Genomics. January 4, 2022; 23 (1): 2.                      


CRISPR-SID: Identifying EZH2 as a druggable target for desmoid tumors via in vivo dependency mapping., Naert T, Tulkens D, Van Nieuwenhuysen T, Przybyl J, Demuynck S, van de Rijn M, Al-Jazrawe M, Alman BA, Coucke PJ, De Leeneer K, Vanhove C, Savvides SN, Creytens D, Vleminckx K, Vleminckx K., Proc Natl Acad Sci U S A. November 23, 2021; 118 (47):                             


Transcriptome and Methylome Analysis Reveal Complex Cross-Talks between Thyroid Hormone and Glucocorticoid Signaling at Xenopus Metamorphosis., Buisine N, Grimaldi A, Jonchere V, Rigolet M, Blugeon C, Hamroune J, Sachs LM., Cells. September 9, 2021; 10 (9):               


Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction., Grau D, Zhang Y, Lee CH, Valencia-Sánchez M, Zhang J, Wang M, Holder M, Svetlov V, Tan D, Nudler E, Reinberg D, Walz T, Armache KJ., Nat Commun. January 29, 2021; 12 (1): 714.      


JARID2 and AEBP2 regulate PRC2 in the presence of H2AK119ub1 and other histone modifications., Kasinath V, Beck C, Sauer P, Poepsel S, Kosmatka J, Faini M, Toso D, Aebersold R, Nogales E., Science. January 22, 2021; 371 (6527):


Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3., Finogenova K, Bonnet J, Poepsel S, Schäfer IB, Finkl K, Schmid K, Litz C, Strauss M, Benda C, Müller J., Elife. November 19, 2020; 9                             


Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos., Naert T, Tulkens D, Edwards NA, Carron M, Shaidani NI, Wlizla M, Boel A, Demuynck S, Horb ME, Coucke P, Willaert A, Zorn AM, Vleminckx K, Vleminckx K., Sci Rep. September 4, 2020; 10 (1): 14662.                      


Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons., Belrose JL, Prasad A, Sammons MA, Gibbs KM, Szaro BG., BMC Genomics. August 5, 2020; 21 (1): 540.                  


RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis., Naert T, Dimitrakopoulou D, Tulkens D, Demuynck S, Carron M, Noelanders R, Eeckhout L, Van Isterdael G, Deforce D, Vanhove C, Van Dorpe J, Creytens D, Vleminckx K, Vleminckx K., Oncogene. March 1, 2020; 39 (13): 2692-2706.          


The regulatory proteins DSCR6 and Ezh2 oppositely regulate Stat3 transcriptional activity in mesoderm patterning during Xenopus development., Loreti M, Shi DL, Carron C., J Biol Chem. February 28, 2020; 295 (9): 2724-2735.                


Endodermal Maternal Transcription Factors Establish Super-Enhancers during Zygotic Genome Activation., Paraiso KD, Blitz IL, Coley M, Cheung J, Sudou N, Taira M, Cho KWY., Cell Rep. June 4, 2019; 27 (10): 2962-2977.e5.                          


Xenopus SOX5 enhances myogenic transcription indirectly through transrepression., Della Gaspera B, Chesneau A, Weill L, Charbonnier F, Chanoine C., Dev Biol. October 15, 2018; 442 (2): 262-275.                    


MicroRNA-31 is required for astrocyte specification., Meares GP, Rajbhandari R, Gerigk M, Tien CL, Chang C, Fehling SC, Rowse A, Mulhern KC, Nair S, Gray GK, Berbari NF, Bredel M, Benveniste EN, Nozell SE., Glia. May 1, 2018; 66 (5): 987-998.


Biophysical characterization of histone H3.3 K27M point mutation., Hetey S, Boros-Oláh B, Kuik-Rózsa T, Li Q, Karányi Z, Szabó Z, Roszik J, Szalóki N, Vámosi G, Tóth K, Székvölgyi L., Biochem Biophys Res Commun. August 26, 2017; 490 (3): 868-875.


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z, Lei A, Xu L, Chen L, Chen Y, Chen Y, Zhang X, Gao Y, Yang X, Zhang M, Cao Y, Cao Y., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


Specification of anteroposterior axis by combinatorial signaling during Xenopus development., Carron C, Shi DL., Wiley Interdiscip Rev Dev Biol. January 1, 2016; 5 (2): 150-68.            


At new heights - endodermal lineages in development and disease., Ober EA, Grapin-Botton A., Development. June 1, 2015; 142 (11): 1912-1917.  


Snail2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development., Tien CL, Jones A, Wang H, Gerigk M, Nozell S, Chang C., Development. February 15, 2015; 142 (4): 722-31.                


Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification., Yasuoka Y, Suzuki Y, Takahashi S, Someya H, Sudou N, Haramoto Y, Cho KW, Asashima M, Sugano S, Taira M., Nat Commun. July 9, 2014; 5 4322.        


The Xenopus homologue of Down syndrome critical region protein 6 drives dorsoanterior gene expression and embryonic axis formation by antagonising polycomb group proteins., Li HY, Grifone R, Saquet A, Carron C, Shi DL., Development. December 1, 2013; 140 (24): 4903-13.                                


catRAPID omics: a web server for large-scale prediction of protein-RNA interactions., Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG., Bioinformatics. November 15, 2013; 29 (22): 2928-30.  


A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development., Paranjpe SS, Jacobi UG, van Heeringen SJ, Veenstra GJ., BMC Genomics. November 6, 2013; 14 762.              


PAF and EZH2 induce Wnt/β-catenin signaling hyperactivation., Jung HY, Jun S, Lee M, Kim HC, Wang X, Ji H, McCrea PD, Park JI., Mol Cell. October 24, 2013; 52 (2): 193-205.


Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/β-catenin signaling., Aldiri I, Moore KB, Hutcheson DA, Zhang J, Vetter ML., Development. July 1, 2013; 140 (14): 2867-78.                


Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates., Long HK, Sims D, Heger A, Blackledge NP, Kutter C, Wright ML, Grützner F, Odom DT, Patient R, Ponting CP, Klose RJ., Elife. February 26, 2013; 2 e00348.                  


Pharmacological reversal of histone methylation presensitizes pancreatic cancer cells to nucleoside drugs: in vitro optimization and novel nanoparticle delivery studies., Hung SW, Mody H, Marrache S, Bhutia YD, Davis F, Cho JH, Zastre J, Dhar S, Chu CK, Govindarajan R., PLoS One. January 1, 2013; 8 (8): e71196.            


KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands., Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF, Rose NR, Lee S, Sims D, Cerase A, Sheahan TW, Koseki H, Brockdorff N, Ponting CP, Kessler BM, Klose RJ., Elife. December 18, 2012; 1 e00205.                      


PRC2 during vertebrate organogenesis: A complex in transition., Aldiri I, Vetter ML., Dev Biol. July 15, 2012; 367 (2): 91-9.


Characterization of a novel Xenopus tropicalis cell line as a model for in vitro studies., Sinzelle L, Thuret R, Hwang HY, Herszberg B, Paillard E, Bronchain OJ, Stemple DL, Dhorne-Pollet S, Pollet N., Genesis. March 1, 2012; 50 (3): 316-24.          


Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus., Kawaguchi A, Ochi H, Sudou N, Ogino H., Int J Dev Biol. January 1, 2012; 56 (4): 295-300.                                          


Corepressor protein CDYL functions as a molecular bridge between polycomb repressor complex 2 and repressive chromatin mark trimethylated histone lysine 27., Zhang Y, Zhang Y, Yang X, Gui B, Xie G, Zhang D, Shang Y, Liang J., J Biol Chem. December 9, 2011; 286 (49): 42414-42425.


Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells., Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J., Cell. December 24, 2009; 139 (7): 1290-302.


Characterization of the expression pattern of the PRC2 core subunit Suz12 during embryonic development of Xenopus laevis., Aldiri I, Vetter ML., Dev Dyn. December 1, 2009; 238 (12): 3185-92.                    


Identification of putative interaction partners for the Xenopus Polycomb-group protein Xeed., Showell C, Cunliffe VT., Gene. May 29, 2002; 291 (1-2): 95-104.          


Xenopus Enhancer of Zeste (XEZ); an anteriorly restricted polycomb gene with a role in neural patterning., Barnett MW, Seville RA, Nijjar S, Old RW, Jones EA., Mech Dev. April 1, 2001; 102 (1-2): 157-67.              


The polycomb group protein EED interacts with YY1, and both proteins induce neural tissue in Xenopus embryos., Satijn DP, Hamer KM, den Blaauwen J, Otte AP., Mol Cell Biol. February 1, 2001; 21 (4): 1360-9.

???pagination.result.page??? 1