Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (31) GO Terms (4) Nucleotides (297) Proteins (47) Interactants (284) Wiki
XB-GENEPAGE-975698

Papers associated with pcbd1



???displayGene.coCitedPapers???
3 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

PCD Genes-From Patients to Model Organisms and Back to Humans., Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D., Int J Mol Sci. February 3, 2022; 23 (3):       


Modeling endoderm development and disease in Xenopus., Edwards NA, Zorn AM., Curr Top Dev Biol. January 1, 2021; 145 61-90.


[Analysis of PIH1D3 variant in a Chinese pedigree affected with primary ciliary dyskinesia]., Wang S, Li B, Chen Y, Zhou Z, Bao R., Zhonghua Yi Xue Yi Chuan Xue Za Zhi. September 10, 2020; 37 (9): 1021-1024.


Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia., Poprzeczko M, Bicka M, Farahat H, Bazan R, Osinka A, Fabczak H, Joachimiak E, Wloga D., Cells. December 11, 2019; 8 (12):     


Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance., Bustamante-Marin XM, Yin WN, Sears PR, Werner ME, Brotslaw EJ, Mitchell BJ, Jania CM, Zeman KL, Rogers TD, Herring LE, Refabért L, Thomas L, Amselem S, Escudier E, Legendre M, Grubb BR, Knowles MR, Zariwala MA, Ostrowski LE., Am J Hum Genet. February 7, 2019; 104 (2): 229-245.                                  


TRRAP is a central regulator of human multiciliated cell formation., Wang Z, Plasschaert LW, Aryal S, Renaud NA, Yang Z, Choo-Wing R, Pessotti AD, Kirkpatrick ND, Cochran NR, Carbone W, Maher R, Lindeman A, Russ C, Reece-Hoyes J, McAllister G, Hoffman GR, Roma G, Jaffe AB., J Cell Biol. June 4, 2018; 217 (6): 1941-1955.                        


Morphological and transcriptomic analyses reveal three discrete primary stages of postembryonic development in the common fire salamander, Salamandra salamandra., Sanchez E, Küpfer E, Goedbloed DJ, Nolte AW, Lüddecke T, Schulz S, Vences M, Steinfartz S., J Exp Zool B Mol Dev Evol. March 1, 2018; 330 (2): 96-108.


TTC25 Deficiency Results in Defects of the Outer Dynein Arm Docking Machinery and Primary Ciliary Dyskinesia with Left-Right Body Asymmetry Randomization., Wallmeier J, Shiratori H, Dougherty GW, Edelbusch C, Hjeij R, Loges NT, Menchen T, Olbrich H, Pennekamp P, Raidt J, Werner C, Minegishi K, Shinohara K, Asai Y, Takaoka K, Lee C, Griese M, Memari Y, Durbin R, Kolb-Kokocinski A, Sauer S, Wallingford JB, Hamada H, Omran H., Am J Hum Genet. August 4, 2016; 99 (2): 460-9.


Recessive mutations in PCBD1 cause a new type of early-onset diabetes., Simaite D, Kofent J, Gong M, Rüschendorf F, Jia S, Arn P, Bentler K, Ellaway C, Kühnen P, Hoffmann GF, Blau N, Spagnoli FM, Hübner N, Raile K., Diabetes. October 1, 2014; 63 (10): 3557-64.


ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6., Zariwala MA, Gee HY, Kurkowiak M, Al-Mutairi DA, Leigh MW, Hurd TW, Hjeij R, Dell SD, Chaki M, Dougherty GW, Adan M, Spear PC, Esteve-Rudd J, Loges NT, Rosenfeld M, Diaz KA, Olbrich H, Wolf WE, Sheridan E, Batten TF, Halbritter J, Porath JD, Kohl S, Lovric S, Hwang DY, Pittman JE, Burns KA, Ferkol TW, Sagel SD, Olivier KN, Morgan LC, Werner C, Raidt J, Pennekamp P, Sun Z, Zhou W, Airik R, Natarajan S, Allen SJ, Amirav I, Wieczorek D, Landwehr K, Nielsen K, Schwerk N, Sertic J, Köhler G, Washburn J, Levy S, Fan S, Koerner-Rettberg C, Amselem S, Williams DS, Mitchell BJ, Drummond IA, Otto EA, Omran H, Knowles MR, Hildebrandt F., Am J Hum Genet. August 8, 2013; 93 (2): 336-45.  


Xmc mediates Xctr1-independent morphogenesis in Xenopus laevis., Haremaki T, Weinstein DC., Dev Dyn. September 1, 2009; 238 (9): 2382-7.            


Transcription factor HNF1beta and novel partners affect nephrogenesis., Dudziak K, Mottalebi N, Senkel S, Edghill EL, Rosengarten S, Roose M, Bingham C, Ellard S, Ryffel GU., Kidney Int. July 1, 2008; 74 (2): 210-7.                  


Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death., Norholm MH, Nour-Eldin HH, Brodersen P, Mundy J, Halkier BA., FEBS Lett. April 17, 2006; 580 (9): 2381-7.


HIC-5 is a novel repressor of lymphoid enhancer factor/T-cell factor-driven transcription., Ghogomu SM, van Venrooy S, Ritthaler M, Wedlich D, Gradl D., J Biol Chem. January 20, 2006; 281 (3): 1755-64.            


Xenopus tropicalis peroxidasin gene is expressed within the developing neural tube and pronephric kidney., Tindall AJ, Pownall ME, Morris ID, Isaacs HV., Dev Dyn. February 1, 2005; 232 (2): 377-84.  


A role for programmed cell death during early neurogenesis in xenopus., Yeo W, Gautier J., Dev Biol. August 1, 2003; 260 (1): 31-45.


Recovery of force during postcontractile depression in single Xenopus muscle fibers., Howlett RA, Stary CM, Hogan MC., Am J Physiol Regul Integr Comp Physiol. May 1, 2001; 280 (5): R1469-75.


Ectopic pigmentation in Xenopus in response to DCoH/PCD, the cofactor of HNF1 transcription factor/pterin-4alpha-carbinolamine dehydratase., Pogge v Strandmann E, Senkel S, Ryffel GU., Mech Dev. March 1, 2000; 91 (1-2): 53-60.


The A-kinase-anchoring protein AKAP95 is a multivalent protein with a key role in chromatin condensation at mitosis., Collas P, Le Guellec K, Taskén K., J Cell Biol. December 13, 1999; 147 (6): 1167-80.          


Programmed cell death during Xenopus development: a spatio-temporal analysis., Hensey C, Gautier J., Dev Biol. November 1, 1998; 203 (1): 36-48.              


Structure and function of PCD/DCoH, an enzyme with regulatory properties., Suck D, Ficner R., FEBS Lett. June 24, 1996; 389 (1): 35-9.


Regulation and function of the tissue-specific transcription factor HNF1 alpha (LFB1) during Xenopus development., Weber H, Strandmann EP, Holewa B, Bartkowski S, Zapp D, Zoidl C, Ryffel GU., Int J Dev Biol. February 1, 1996; 40 (1): 297-304.                      


Spatial, temporal and hormonal regulation of programmed muscle cell death during metamorphosis of the frog Xenopus laevis., Nishikawa A, Hayashi H., Differentiation. November 1, 1995; 59 (4): 207-14.


Developmental expression of the maternal protein XDCoH, the dimerization cofactor of the homeoprotein LFB1 (HNF1)., Pogge yon Strandmann E, Ryffel GU., Development. April 1, 1995; 121 (4): 1217-26.                      


Hormonal regulation of programmed cell death during amphibian metamorphosis., Tata JR., Biochem Cell Biol. January 1, 1994; 72 (11-12): 581-8.


Maximum tension and force-velocity properties of fatigued, single Xenopus muscle fibres studied by caffeine and high K+., Lännergren J, Westerblad H., J Physiol. February 1, 1989; 409 473-90.


The relation between force and intracellular pH in fatigued, single Xenopus muscle fibres., Westerblad H, Lännergren J., Acta Physiol Scand. May 1, 1988; 133 (1): 83-9.


The effect of temperature and stimulation scheme on fatigue and recovery in Xenopus muscle fibres., Lännergren J, Westerblad H., Acta Physiol Scand. May 1, 1988; 133 (1): 73-82.


Action potential fatigue in single skeletal muscle fibres of Xenopus., Lännergren J, Westerblad H., Acta Physiol Scand. March 1, 1987; 129 (3): 311-8.


Force and membrane potential during and after fatiguing, intermittent tetanic stimulation of single Xenopus muscle fibres., Westerblad H, Lännergren J., Acta Physiol Scand. November 1, 1986; 128 (3): 369-78.


Isolation and characterization of a mouse cDNA clone that expresses mast-cell growth-factor activity in monkey cells., Yokota T, Lee F, Rennick D, Hall C, Arai N, Mosmann T, Nabel G, Cantor H, Arai K., Proc Natl Acad Sci U S A. February 1, 1984; 81 (4): 1070-4.

???pagination.result.page??? 1