Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (24) GO Terms (13) Nucleotides (319) Proteins (54) Interactants (301) Wiki
XB-GENEPAGE-978490

Papers associated with sumo1



???displayGene.coCitedPapers???
2 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Influence of Sox protein SUMOylation on neural development and regeneration., Chang KC., Neural Regen Res. March 1, 2022; 17 (3): 477-481.      


Conservation and divergence of protein pathways in the vertebrate heart., Federspiel JD, Tandon P, Wilczewski CM, Wasson L, Herring LE, Venkatesh SS, Cristea IM, Conlon FL., PLoS Biol. September 6, 2019; 17 (9): e3000437.                                                    


A deficiency in SUMOylation activity disrupts multiple pathways leading to neural tube and heart defects in Xenopus embryos., Bertke MM, Dubiak KM, Cronin L, Zeng E, Huber PW., BMC Genomics. May 17, 2019; 20 (1): 386.              


Mitotic replisome disassembly depends on TRAIP ubiquitin ligase activity., Priego Moreno S, Jones RM, Poovathumkadavil D, Scaramuzza S, Gambus A., Life Sci Alliance. April 12, 2019; 2 (2):                       


Xenopus tropicalis Genome Re-Scaffolding and Re-Annotation Reach the Resolution Required for In Vivo ChIA-PET Analysis., Buisine N, Ruan X, Bilesimo P, Grimaldi A, Alfama G, Ariyaratne P, Mulawadi F, Chen J, Sung WK, Liu ET, Demeneix BA, Ruan Y, Sachs LM., PLoS One. September 4, 2015; 10 (9): e0137526.          


Small ubiquitin-like modifier (SUMO)-mediated repression of the Xenopus Oocyte 5 S rRNA genes., Malik MQ, Bertke MM, Huber PW., J Biol Chem. December 19, 2014; 289 (51): 35468-81.                


Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system., Ma L, Aslanian A, Sun H, Jin M, Shi Y, Yates JR, Hunter T., Mol Cell Proteomics. July 1, 2014; 13 (7): 1659-75.


Detecting endogenous SUMO targets in mammalian cells and tissues., Becker J, Barysch SV, Karaca S, Dittner C, Hsiao HH, Berriel Diaz M, Herzig S, Urlaub H, Melchior F., Nat Struct Mol Biol. April 1, 2013; 20 (4): 525-31.


SUMO modification of NZFP mediates transcriptional repression through TBP binding., Kim M, Chen Z, Shim MS, Lee MS, Kim JE, Kwon YE, Yoo TJ, Kim JY, Bang JY, Carlson BA, Seol JH, Hatfield DL, Lee BJ., Mol Cells. January 1, 2013; 35 (1): 70-8.


SUMO2/3 modification of cyclin E contributes to the control of replication origin firing., Bonne-Andrea C, Kahli M, Mechali F, Lemaitre JM, Bossis G, Coux O., Nat Commun. January 1, 2013; 4 1850.        


Alternative TFAP2A isoforms have distinct activities in breast cancer., Berlato C, Chan KV, Price AM, Canosa M, Scibetta AG, Hurst HC., Breast Cancer Res. March 4, 2011; 13 (2): R23.              


PIASy-dependent SUMOylation regulates DNA topoisomerase IIalpha activity., Ryu H, Furuta M, Kirkpatrick D, Gygi SP, Azuma Y., J Cell Biol. November 15, 2010; 191 (4): 783-94.              


Identification and developmental expression of Xenopus laevis SUMO proteases., Wang Y, Mukhopadhyay D, Mathew S, Hasebe T, Heimeier RA, Azuma Y, Kolli N, Shi YB, Wilkinson KD, Dasso M., PLoS One. December 11, 2009; 4 (12): e8462.          


Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases., Yun C, Wang Y, Mukhopadhyay D, Backlund P, Kolli N, Yergey A, Wilkinson KD, Dasso M., J Cell Biol. November 17, 2008; 183 (4): 589-95.          


XSUMO-1 is required for normal mesoderm induction and axis elongation during early Xenopus development., Yukita A, Michiue T, Danno H, Asashima M., Dev Dyn. October 1, 2007; 236 (10): 2757-66.    


Inhibitor-resistant type I receptors reveal specific requirements for TGF-beta signaling in vivo., Ho DM, Chan J, Bayliss P, Whitman M., Dev Biol. July 15, 2006; 295 (2): 730-42.            


Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts., Leach CA, Michael WM., J Cell Biol. December 19, 2005; 171 (6): 947-54.                


Modification of the erythroid transcription factor GATA-1 by SUMO-1., Collavin L, Gostissa M, Avolio F, Secco P, Ronchi A, Santoro C, Del Sal G., Proc Natl Acad Sci U S A. June 15, 2004; 101 (24): 8870-5.


SUMO-2/3 regulates topoisomerase II in mitosis., Azuma Y, Arnaoutov A, Dasso M., J Cell Biol. November 10, 2003; 163 (3): 477-87.            


Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex., Zhang H, Saitoh H, Matunis MJ., Mol Cell Biol. September 1, 2002; 22 (18): 6498-508.


Association of the human SUMO-1 protease SENP2 with the nuclear pore., Hang J, Dasso M., J Biol Chem. May 31, 2002; 277 (22): 19961-6.


Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue., Lee GW, Melchior F, Matunis MJ, Mahajan R, Tian Q, Anderson P., J Biol Chem. March 13, 1998; 273 (11): 6503-7.


Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2., Saitoh H, Sparrow DB, Shiomi T, Pu RT, Nishimoto T, Mohun TJ, Dasso M., Curr Biol. January 15, 1998; 8 (2): 121-4.


Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1., Sternsdorf T, Jensen K, Will H., J Cell Biol. December 29, 1997; 139 (7): 1621-34.              

???pagination.result.page??? 1