Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (19) GO Terms (15) Nucleotides (70) Proteins (43) Interactants (108) Wiki
XB-GENEPAGE-981991

Papers associated with gck



???displayGene.coCitedPapers???
1 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Species and tissue distribution of the regulatory protein of glucokinase., Vandercammen A, Van Schaftingen E., Biochem J. September 1, 1993; 294 ( Pt 2) 551-6.


Coexpression of glucose transporters and glucokinase in Xenopus oocytes indicates that both glucose transport and phosphorylation determine glucose utilization., Morita H, Yano Y, Niswender KD, May JM, Whitesell RR, Wu L, Printz RL, Granner DK, Magnuson MA, Powers AC., J Clin Invest. October 1, 1994; 94 (4): 1373-82.


Cloning and expression of a Xenopus liver cDNA encoding a fructose-phosphate-insensitive regulatory protein of glucokinase., Veiga-Da-Cunha M, Detheux M, Watelet N, Van Schaftingen E., Eur J Biochem. October 1, 1994; 225 (1): 43-51.


Amino acid conservation in animal glucokinases. Identification of residues implicated in the interaction with the regulatory protein., Veiga-da-Cunha M, Courtois S, Michel A, Gosselain E, Van Schaftingen E., J Biol Chem. March 15, 1996; 271 (11): 6292-7.


Organization of the human glucokinase regulator gene GCKR., Hayward BE, Dunlop N, Intody S, Leek JP, Markham AF, Warner JP, Bonthron DT., Genomics. April 1, 1998; 49 (1): 137-42.


Glucokinase regulatory protein is essential for the proper subcellular localisation of liver glucokinase., de la Iglesia N, Veiga-da-Cunha M, Van Schaftingen E, Guinovart JJ, Ferrer JC., FEBS Lett. August 6, 1999; 456 (2): 332-8.


Cloning of cDNA and the gene encoding human hepatocyte nuclear factor (HNF)-3 beta and mutation screening in Japanese subjects with maturity-onset diabetes of the young., Yamada S, Zhu Q, Aihara Y, Onda H, Zhang Z, Yu L, Jin L, Si YJ, Nishigori H, Tomura H, Inoue I, Morikawa A, Yamagata K, Hanafusa T, Matsuzawa Y, Takeda J., Diabetologia. January 1, 2000; 43 (1): 121-4.


Identification of fructose 6-phosphate- and fructose 1-phosphate-binding residues in the regulatory protein of glucokinase., Veiga-da-Cunha M, Van Schaftingen E., J Biol Chem. March 8, 2002; 277 (10): 8466-73.


Differences in regulatory properties between human and rat glucokinase regulatory protein., Brocklehurst KJ, Davies RA, Agius L., Biochem J. March 1, 2004; 378 (Pt 2): 693-7.


A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes., Proks P, Arnold AL, Bruining J, Girard C, Flanagan SE, Larkin B, Colclough K, Hattersley AT, Ashcroft FM, Ellard S., Hum Mol Genet. June 1, 2006; 15 (11): 1793-800.


Molecular cloning and characterisation of SmSLK, a novel Ste20-like kinase in Schistosoma mansoni., Yan Y, Tulasne D, Browaeys E, Cailliau K, Khayath N, Pierce RJ, Trolet J, Fafeur V, Ben Younes A, Dissous C., Int J Parasitol. December 1, 2007; 37 (14): 1539-50.


Identification of eight new mutations in the GCK gene by DHPLC screening in a Spanish population., Solera J, Arias P, Amiñoso C, González-Casado I, Garre P, Herranz L, Villarroel A, Cruz M, Jáñez M, Pallardo LF, Gracia R., Diabetes Res Clin Pract. July 1, 2009; 85 (1): 20-3.


Evolution of vertebrate glucokinase regulatory protein from a bacterial N-acetylmuramate 6-phosphate etherase., Veiga-da-Cunha M, Sokolova T, Opperdoes F, Van Schaftingen E., Biochem J. October 12, 2009; 423 (3): 323-32.


Molecular basis for the role of glucokinase regulatory protein as the allosteric switch for glucokinase., Choi JM, Seo MH, Kyeong HH, Kim E, Kim HS., Proc Natl Acad Sci U S A. June 18, 2013; 110 (25): 10171-6.


Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis., Nagasawa K, Tanizaki Y, Okui T, Watarai A, Ueda S, Kato T., Biol Open. August 21, 2013; 2 (10): 1057-69.                  


Recessive mutations in PCBD1 cause a new type of early-onset diabetes., Simaite D, Kofent J, Gong M, Rüschendorf F, Jia S, Arn P, Bentler K, Ellaway C, Kühnen P, Hoffmann GF, Blau N, Spagnoli FM, Hübner N, Raile K., Diabetes. October 1, 2014; 63 (10): 3557-64.


Xenopus as a model system for studying pancreatic development and diabetes., Kofent J, Spagnoli FM., Semin Cell Dev Biol. March 1, 2016; 51 106-16.  


Metabolic and immune impairments induced by the endocrine disruptors benzo[a]pyrene and triclosan in Xenopus tropicalis., Regnault C, Willison J, Veyrenc S, Airieau A, Méresse P, Fortier M, Fournier M, Brousseau P, Raveton M, Reynaud S., Chemosphere. July 1, 2016; 155 519-527.


Adverse effects and potential mechanisms of fluxapyroxad in Xenopus laevis on carbohydrate and lipid metabolism., Zhao Y, Jiao F, Tang T, Wu S, Wang F, Zhao X., Environ Pollut. September 1, 2023; 332 121710.              

???pagination.result.page??? 1