Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (27) GO Terms (1) Nucleotides (73) Proteins (40) Interactants (184) Wiki
XB-GENEPAGE-984173

Papers associated with chat



???displayGene.coCitedPapers???
3 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis., Morona R, Bandín S, López JM, Moreno N, González A., J Comp Neurol. October 1, 2020; 528 (14): 2361-2403.                                                                


Functional limb muscle innervation prior to cholinergic transmitter specification during early metamorphosis in Xenopus., Lambert FM, Cardoit L, Courty E, Bougerol M, Thoby-Brisson M, Simmers J, Tostivint H, Le Ray D., Elife. May 30, 2018; 7                     


Sigma-1 Receptor Plays a Negative Modulation on N-type Calcium Channel., Zhang K, Zhao Z, Lan L, Wei X, Wang L, Liu X, Yan H, Zheng J., Front Pharmacol. May 26, 2017; 8 302.              


Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R, Ferran JL, Puelles L, González A., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


The Possible Role of TASK Channels in Rank-Ordered Recruitment of Motoneurons in the Dorsolateral Part of the Trigeminal Motor Nucleus., Okamoto K, Emura N, Sato H, Fukatsu Y, Saito M, Tanaka C, Morita Y, Nishimura K, Kuramoto E, Xu Yin D, Furutani K, Okazawa M, Kurachi Y, Kaneko T, Maeda Y, Yamashiro T, Takada K, Toyoda H, Kang Y., eNeuro. July 20, 2016; 3 (3):                     


Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver., Bougerol M, Auradé F, Lambert FM, Le Ray D, Combes D, Thoby-Brisson M, Relaix F, Pollet N, Tostivint H., PLoS One. February 6, 2015; 10 (2): e0117370.                            


Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development., Morona R, González A., J Comp Neurol. January 1, 2013; 521 (1): 79-108.                  


Target-dependent regulation of neurotransmitter specification and embryonic neuronal calcium spike activity., Xiao Q, Xu L, Spitzer NC., J Neurosci. April 21, 2010; 30 (16): 5792-801.


Reduced levels of survival motor neuron protein leads to aberrant motoneuron growth in a Xenopus model of muscular atrophy., Ymlahi-Ouazzani Q, J Bronchain O, Paillard E, Ballagny C, Chesneau A, Jadaud A, Mazabraud A, Pollet N., Neurogenetics. February 1, 2010; 11 (1): 27-40.  


A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate., Nishino A, Okamura Y, Piscopo S, Brown ER., BMC Neurosci. January 19, 2010; 11 6.            


Mediolateral and rostrocaudal topographic organization of the sympathetic preganglionic cell pool in the spinal cord of Xenopus laevis., Nakano M, Goris RC, Atobe Y, Kadota T, Funakoshi K., J Comp Neurol. March 20, 2009; 513 (3): 292-314.                      


Embryonically expressed GABA and glutamate drive electrical activity regulating neurotransmitter specification., Root CM, Velázquez-Ulloa NA, Monsalve GC, Minakova E, Spitzer NC., J Neurosci. April 30, 2008; 28 (18): 4777-84.              


Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments., Moreno N, González A, Rétaux S., Dev Neurobiol. March 1, 2008; 68 (4): 504-20.                  


Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry., López JM, Morona R, Moreno N, Domínguez L, González A., Neurosci Lett. September 25, 2007; 425 (2): 73-7.


Choline acetyltransferase immunoreactivity in the developing brain of Xenopus laevis., López JM, Smeets WJ, González A., J Comp Neurol. November 25, 2002; 453 (4): 418-34.        


Localization of choline acetyltransferase in the developing and adult retina of Xenopus laevis., López JM, Moreno N, González A., Neurosci Lett. September 13, 2002; 330 (1): 61-4.


Evoked acetylcholine release by immortalized brain endothelial cells genetically modified to express choline acetyltransferase and/or the vesicular acetylcholine transporter., Malo M, Diebler MF, Prado de Carvalho L, Meunier FM, Dunant Y, Bloc A, Stinnakre J, Tomasi M, Tchélingérian J, Couraud PO, Israël M., J Neurochem. October 1, 1999; 73 (4): 1483-91.


Drosophila choline acetyltransferase temperature-sensitive mutants., Wang W, Kitamoto T, Salvaterra PM., Neurochem Res. August 1, 1999; 24 (8): 1081-7.


Acetylcholine synthesis and quantal release reconstituted by transfection of mediatophore and choline acetyltranferase cDNAs., Bloc A, Bugnard E, Dunant Y, Falk-Vairant J, Israël M, Loctin F, Roulet E., Eur J Neurosci. May 1, 1999; 11 (5): 1523-34.


Release of acetylcholine from embryonic myocytes in Xenopus cell cultures., Fu WM, Liou HC, Chen YH, Wang SM., J Physiol. June 1, 1998; 509 ( Pt 2) 497-506.


Cholinergic regulation of the pituitary: autoexcitatory control by acetylcholine of melanotrope cell activity in Xenopus laevis., van Strien FJ, Jenks BG, Vaudry H, Roubos EW., Ann N Y Acad Sci. May 15, 1998; 839 66-73.


Basal ganglia organization in amphibians: chemoarchitecture., Marín O, Smeets WJ, González A., J Comp Neurol. March 16, 1998; 392 (3): 285-312.                      


Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians., Marín O, Smeets WJ, González A., J Comp Neurol. June 16, 1997; 382 (4): 499-534.        


Hydrophilic and amphiphilic forms of Drosophila choline acetyltransferase are encoded by a single mRNA., Salem N, Medilanski J, Pellegrinelli N, Eder-Colli L., Eur J Neurosci. May 1, 1994; 6 (5): 737-45.


Single RNA species injected in Xenopus oocyte directs the synthesis of active choline acetyltransferase., McCaman RE, Carbini L, Maines V, Salvaterra PM., Dev Biol. April 1, 1988; 427 (2): 107-13.


Synthesis of catalytically active choline acetyltransferase in Xenopus oocytes injected with messenger RNA from rat central nervous system., Berrard S, Biguet NF, Gregoire D, Blanot F, Smith J, Mallet J., Neurosci Lett. December 3, 1986; 72 (1): 93-8.


[Ontogenesis of the acetylcholine system in the brain of the South African clawed toad (Xenopus laevis Daudin)]., Schlesinger C., J Hirnforsch. January 1, 1981; 22 (5): 543-53.

???pagination.result.page??? 1