Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (40) GO Terms (15) Nucleotides (106) Proteins (54) Interactants (461) Wiki
XB-GENEPAGE-986814

Papers associated with ercc4



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


The role of SLX4 and its associated nucleases in DNA interstrand crosslink repair., Hoogenboom WS, Boonen RACM, Knipscheer P., Nucleic Acids Res. March 18, 2019; 47 (5): 2377-2388.          


Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading., Amunugama R, Willcox S, Wu RA, Abdullah UB, El-Sagheer AH, Brown T, McHugh PJ, Griffith JD, Walter JC., Cell Rep. June 19, 2018; 23 (12): 3419-3428.        


Peptidomic analysis of skin secretions of the Mexican burrowing toad Rhinophrynus dorsalis (Rhinophrynidae): Insight into the origin of host-defense peptides within the Pipidae and characterization of a proline-arginine-rich peptide., Conlon JM, Guilhaudis L, Leprince J, Coquet L, Mangoni ML, Attoub S, Jouenne T, King JD., Peptides. November 1, 2017; 97 22-28.


Recruitment and positioning determine the specific role of the XPF-ERCC1 endonuclease in interstrand crosslink repair., Klein Douwel D, Hoogenboom WS, Boonen RA, Knipscheer P., EMBO J. July 14, 2017; 36 (14): 2034-2046.                          


In vitro chromatin templates to study nucleotide excision repair., Liu X., DNA Repair (Amst). December 1, 2015; 36 68-76.


Host-defense and trefoil factor family peptides in skin secretions of the Mawa clawed frog Xenopus boumbaensis (Pipidae)., Conlon JM, Mechkarska M, Kolodziejek J, Leprince J, Coquet L, Jouenne T, Vaudry H, Nowotny N, King JD., Peptides. October 1, 2015; 72 44-9.


DNA interstrand cross-link repair requires replication-fork convergence., Zhang J, Dewar JM, Budzowska M, Motnenko A, Cohn MA, Walter JC., Nat Struct Mol Biol. March 1, 2015; 22 (3): 242-7.      


Evidence from peptidomic analysis of skin secretions that allopatric populations of Xenopus gilli (Anura:Pipidae) constitute distinct lineages., Conlon JM, Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Measey GJ., Peptides. January 1, 2015; 63 118-25.


Prokaryotic expression and antimicrobial mechanism of XPF-St7-derived α-helical peptides., Yi T, Huang Y, Chen Y., J Pept Sci. January 1, 2015; 21 (1): 46-52.


Host-defense peptides from skin secretions of Fraser's clawed frog Xenopus fraseri (Pipidae): Further insight into the evolutionary history of the Xenopodinae., Conlon JM, Mechkarska M, Kolodziejek J, Nowotny N, Coquet L, Leprince J, Jouenne T, Vaudry H., Comp Biochem Physiol Part D Genomics Proteomics. December 1, 2014; 12 45-52.


Host-defense peptides from skin secretions of the octoploid frogs Xenopus vestitus and Xenopus wittei (Pipidae): insights into evolutionary relationships., Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Michalak K, Michalak P, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2014; 11 20-8.


XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4., Klein Douwel D, Boonen RA, Long DT, Szypowska AA, Räschle M, Walter JC, Knipscheer P., Mol Cell. May 8, 2014; 54 (3): 460-71.


Host-defense peptides with therapeutic potential from skin secretions of frogs from the family pipidae., Conlon JM, Mechkarska M., Pharmaceuticals (Basel). January 15, 2014; 7 (1): 58-77.          


Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions., Vandenberg LN, Blackiston DJ, Rea AC, Dore TM, Levin M., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.                


Peptidomic analysis of skin secretions provides insight into the taxonomic status of the African clawed frogs Xenopus victorianus and Xenopus laevis sudanensis (Pipidae)., King JD, Mechkarska M, Meetani MA, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2013; 8 (3): 250-4.


A comparison of host-defense peptides in skin secretions of female Xenopus laevis × Xenopus borealis and X. borealis × X. laevis F1 hybrids., Mechkarska M, Prajeep M, Leprince J, Vaudry H, Meetani MA, Evans BJ, Conlon JM., Peptides. July 1, 2013; 45 1-8.


The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks., Lee J, Dunphy WG., Mol Biol Cell. May 1, 2013; 24 (9): 1343-53.          


A role for the MRN complex in ATR activation via TOPBP1 recruitment., Duursma AM, Driscoll R, Elias JE, Cimprich KA., Mol Cell. April 11, 2013; 50 (1): 116-22.


Origin and functional diversification of an amphibian defense peptide arsenal., Roelants K, Fry BG, Ye L, Stijlemans B, Brys L, Kok P, Clynen E, Schoofs L, Cornelis P, Bossuyt F., PLoS Genet. January 1, 2013; 9 (8): e1003662.            


Hybridization between the African clawed frogs Xenopus laevis and Xenopus muelleri (Pipidae) increases the multiplicity of antimicrobial peptides in skin secretions of female offspring., Mechkarska M, Meetani M, Michalak P, Vaksman Z, Takada K, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2012; 7 (3): 285-91.


Host-defense peptides in skin secretions of the tetraploid frog Silurana epitropicalis with potent activity against methicillin-resistant Staphylococcus aureus (MRSA)., Conlon JM, Mechkarska M, Prajeep M, Sonnevend A, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD., Peptides. September 1, 2012; 37 (1): 113-9.


Host-defense peptides in skin secretions of African clawed frogs (Xenopodinae, Pipidae)., Conlon JM, Mechkarska M, King JD., Gen Comp Endocrinol. May 1, 2012; 176 (3): 513-8.    


Peptidomic analysis of skin secretions demonstrates that the allopatric populations of Xenopus muelleri (Pipidae) are not conspecific., Mechkarska M, Ahmed E, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD, Conlon JM., Peptides. July 1, 2011; 32 (7): 1502-8.


Genome duplications within the Xenopodinae do not increase the multiplicity of antimicrobial peptides in Silurana paratropicalis and Xenopus andrei skin secretions., Mechkarska M, Eman A, Coquet L, Jérôme L, Jouenne T, Vaudry H, King JD, Takada K, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. June 1, 2011; 6 (2): 206-12.


Purification and properties of antimicrobial peptides from skin secretions of the Eritrea clawed frog Xenopus clivii (Pipidae)., Conlon JM, Mechkarska M, Ahmed E, Leprince J, Vaudry H, King JD, Takada K., Comp Biochem Physiol C Toxicol Pharmacol. April 1, 2011; 153 (3): 350-4.


Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae)., Mechkarska M, Ahmed E, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD, Conlon JM., Comp Biochem Physiol C Toxicol Pharmacol. November 1, 2010; 152 (4): 467-72.


Orthologs of magainin, PGLa, procaerulein-derived, and proxenopsin-derived peptides from skin secretions of the octoploid frog Xenopus amieti (Pipidae)., Conlon JM, Al-Ghaferi N, Ahmed E, Meetani MA, Leprince J, Nielsen PF., Peptides. June 1, 2010; 31 (6): 989-94.


Continued primer synthesis at stalled replication forks contributes to checkpoint activation., Van C, Yan S, Michael WM, Waga S, Cimprich KA., J Cell Biol. April 19, 2010; 189 (2): 233-46.              


Rad17 plays a central role in establishment of the interaction between TopBP1 and the Rad9-Hus1-Rad1 complex at stalled replication forks., Lee J, Lee J, Dunphy WG., Mol Biol Cell. March 15, 2010; 21 (6): 926-35.            


TopBP1 and DNA polymerase-alpha directly recruit the 9-1-1 complex to stalled DNA replication forks., Yan S, Michael WM., J Cell Biol. March 23, 2009; 184 (6): 793-804.            


Mechanism of replication-coupled DNA interstrand crosslink repair., Räschle M, Knipscheer P, Knipsheer P, Enoiu M, Angelov T, Sun J, Griffith JD, Ellenberger TE, Schärer OD, Walter JC., Cell. September 19, 2008; 134 (6): 969-80.              


The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR., Lee J, Lee J, Kumagai A, Dunphy WG., J Biol Chem. September 21, 2007; 282 (38): 28036-44.


Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and mini-chromosome maintenance helicase activities., Chang DJ, Lupardus PJ, Cimprich KA., J Biol Chem. October 27, 2006; 281 (43): 32081-8.


Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling., Bomgarden RD, Lupardus PJ, Soni DV, Yee MC, Ford JM, Cimprich KA., EMBO J. June 7, 2006; 25 (11): 2605-14.


Phosphorylation of Xenopus Rad1 and Hus1 defines a readout for ATR activation that is independent of Claspin and the Rad9 carboxy terminus., Lupardus PJ, Cimprich KA., Mol Biol Cell. April 1, 2006; 17 (4): 1559-69.


Cut5 is required for the binding of Atr and DNA polymerase alpha to genotoxin-damaged chromatin., Parrilla-Castellar ER, Karnitz LM., J Biol Chem. November 14, 2003; 278 (46): 45507-11.


The human checkpoint Rad protein Rad17 is chromatin-associated throughout the cell cycle, localizes to DNA replication sites, and interacts with DNA polymerase epsilon., Post SM, Tomkinson AE, Lee EY., Nucleic Acids Res. October 1, 2003; 31 (19): 5568-75.


Molecular analysis and developmental expression of the focal adhesion kinase pp125FAK in Xenopus laevis., Hens MD, DeSimone DW., Dev Biol. August 1, 1995; 170 (2): 274-88.                    


Localization of xenopsin and xenopsin precursor fragment immunoreactivities in the skin and gastrointestinal tract of Xenopus laevis., Sadler KC, Bevins CL, Kaltenbach JC., Cell Tissue Res. November 1, 1992; 270 (2): 257-63.

???pagination.result.page??? 1