Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (31) GO Terms (53) Nucleotides (150) Proteins (45) Interactants (114) Wiki

Papers associated with adcyap1

Search for adcyap1 morpholinos using Textpresso

Limit to papers also referencing gene:
1 paper(s) referencing morpholinos

Results 1 - 31 of 31 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

The role of sensory innervation in cornea-lens regeneration., Perry KJ, Hamilton PW, Sonam S, Singh R, Henry JJ., Dev Dyn. January 1, 2019; 248 (7): 530-544.          

PACAP-38 and PACAP(6-38) Degranulate Rat Meningeal Mast Cells via the Orphan MrgB3-Receptor., Pedersen SH, la Cour SH, Calloe K, Hauser F, Olesen J, Klaerke DA, Jansen-Olesen I., Front Cell Neurosci. January 1, 2019; 13 114.              

Functional Pairing of Class B1 Ligand-GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/Glucagon Receptor Family., On JS, Duan C, Chow BK, Lee LT., Mol Biol Evol. August 1, 2015; 32 (8): 2048-59.

Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus., Tam JK, Chow BK, Lee LT., PLoS One. January 1, 2013; 8 (1): e53482.          

A novel glucagon-related peptide (GCRP) and its receptor GCRPR account for coevolution of their family members in vertebrates., Park CR, Moon MJ, Park S, Kim DK, Cho EB, Millar RP, Hwang JI, Seong JY., PLoS One. January 1, 2013; 8 (6): e65420.              

The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis., Jenks BG, Kuribara M, Kidane AH, Kramer BM, Roubos EW, Scheenen WJ., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.      

Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin., Tam JK, Lau KW, Lee LT, Chu JY, Ng KM, Fournier A, Vaudry H, Chow BK., PLoS One. April 1, 2011; 6 (4): e19384.            

Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW, Van Wijk DC, Kozicz T, Scheenen WJ, Jenks BG., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    

The serendipitous origin of chordate secretin peptide family members., Cardoso JC, Vieira FA, Gomes AS, Power DM., BMC Evol Biol. May 6, 2010; 10 135.            

About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJ, Kozicz T., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      

Differential regulation of gonadotropins (FSH and LH) and growth hormone (GH) by neuroendocrine, endocrine, and paracrine factors in the zebrafish--an in vitro approach., Lin SW, Ge W., Gen Comp Endocrinol. January 15, 2009; 160 (2): 183-93.

Pituitary adenylate cyclase-activating polypeptide regulates brain-derived neurotrophic factor exon IV expression through the VPAC1 receptor in the amphibian melanotrope cell., Kidane AH, Roubos EW, Jenks BG., Endocrinology. August 1, 2008; 149 (8): 4177-82.

Actions of PACAP and VIP on melanotrope cells of Xenopus laevis., Kidane AH, Cruijsen PM, Ortiz-Bazan MA, Vaudry H, Leprince J, Kuijpers-Kwant FJ, Roubos EW, Jenks BG., Peptides. September 1, 2007; 28 (9): 1790-6.

Spatial targeting of type II protein kinase A to filopodia mediates the regulation of growth cone guidance by cAMP., Han J, Han L, Tiwari P, Wen Z, Zheng JQ., J Cell Biol. January 1, 2007; 176 (1): 101-11.                  

Paradoxical antagonism of PACAP receptor signaling by VIP in Xenopus oocytes via the type-C natriuretic peptide receptor., Lelièvre V, Hu Z, Ioffe Y, Byun JY, Flores A, Seksenyan A, Waschek JA., Cell Signal. November 1, 2006; 18 (11): 2013-21.

Shark rectal gland vasoactive intestinal peptide receptor: cloning, functional expression, and regulation of CFTR chloride channels., Bewley MS, Pena JT, Plesch FN, Decker SE, Weber GJ, Forrest JN., Am J Physiol Regul Integr Comp Physiol. October 1, 2006; 291 (4): R1157-64.

Involvement of G protein betagamma-subunits in diverse signaling induced by G(i/o)-coupled receptors: study using the Xenopus oocyte expression system., Uezono Y, Kaibara M, Murasaki O, Taniyama K., Am J Physiol Cell Physiol. October 1, 2004; 287 (4): C885-94.

Direct cAMP signaling through G-protein-coupled receptors mediates growth cone attraction induced by pituitary adenylate cyclase-activating polypeptide., Guirland C, Buck KB, Gibney JA, DiCicco-Bloom E, Zheng JQ., J Neurosci. March 15, 2003; 23 (6): 2274-83.

Maxadilan activates PAC1 receptors expressed in Xenopus laevis xelanophores., Pereira P, Reddy VB, Kounga K, Bello Y, Lerner E., Pigment Cell Res. December 1, 2002; 15 (6): 461-6.

Comparative distributions of pituitary adenylyl cyclase-activating polypeptide and its selective type I receptor mRNA in the frog (Xenopus laevis) brain., Hu Z, Lelievre V, Rodriguez WI, Cheng JW, Waschek JA., Regul Pept. November 15, 2002; 109 (1-3): 15-26.

Distribution and effects of PACAP, VIP, nitric oxide and GABA in the gut of the African clawed frog Xenopus laevis., Olsson C., J Exp Biol. April 1, 2002; 205 (Pt 8): 1123-34.

Embryonic expression of pituitary adenylyl cyclase-activating polypeptide and its selective type I receptor gene in the frog Xenopus laevis neural tube., Hu Z, Lelievre V, Rodriguez WI, Tam J, Cheng JW, Cohen-Cory S, Waschek JA., J Comp Neurol. December 17, 2001; 441 (3): 266-75.                  

The control of gut motility., Olsson C, Holmgren S., Comp Biochem Physiol A Mol Integr Physiol. March 1, 2001; 128 (3): 481-503.

Molecular cloning of growth hormone-releasing hormone/pituitary adenylyl cyclase-activating polypeptide in the frog Xenopus laevis: brain distribution and regulation after castration., Hu Z, Lelievre V, Tam J, Cheng JW, Fuenzalida G, Zhou X, Waschek JA., Endocrinology. September 1, 2000; 141 (9): 3366-76.

Dissecting GHRH- and pituitary adenylate cyclase activating polypeptide-mediated signalling in Xenopus., Otto C, Schütz G, Niehrs C, Glinka A., Mech Dev. June 1, 2000; 94 (1-2): 111-6.        

Characterization and messenger ribonucleic acid distribution of a cloned pituitary adenylate cyclase-activating polypeptide type I receptor in the frog Xenopus laevis brain., Hu Z, Lelievre V, Chao A, Zhou X, Waschek JA., Endocrinology. February 1, 2000; 141 (2): 657-65.

Functional characterization of a receptor for vasoactive-intestinal-peptide-related peptides in cultured dermal melanophores from Xenopus laevis., Marotti LA, Jayawickreme CK, Lerner MR., Pigment Cell Res. April 1, 1999; 12 (2): 89-97.

Hyperpolarization-activated Cl- current elicited by pituitary adenylate cyclase activating polypeptide in Xenopus oocytes., Kato M, Hanaoka Y, Tatemoto K, Kimura C., Regul Pept. June 18, 1997; 70 (2-3): 167-72.

PACAP/VIP receptors in pancreatic beta-cells: their roles in insulin secretion., Inagaki N, Kuromi H, Seino S., Ann N Y Acad Sci. December 26, 1996; 805 44-51; discussion 52-3.

Cloning and functional characterization of a third pituitary adenylate cyclase-activating polypeptide receptor subtype expressed in insulin-secreting cells., Inagaki N, Yoshida H, Mizuta M, Mizuno N, Fujii Y, Gonoi T, Miyazaki J, Seino S., Proc Natl Acad Sci U S A. March 29, 1994; 91 (7): 2679-83.

Differential signal transduction by five splice variants of the PACAP receptor., Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L., Nature. September 9, 1993; 365 (6442): 170-5.

Page(s): 1