Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (54) GO Terms (5) Nucleotides (288) Proteins (47) Interactants (257) Wiki
XB-GENEPAGE-998580

Papers associated with mcts1



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Functional coupling of organic anion transporter OAT10 (SLC22A13) and monocarboxylate transporter MCT1 (SLC16A1) influencing the transport function of OAT10., Ohtsu N, Ohgaki R, Jin C, Xu M, Okanishi H, Takahashi R, Matsui A, Kishimoto W, Ishiguro N, Kanai Y., J Pharmacol Sci. September 1, 2022; 150 (1): 41-48.


Identification of the essential extracellular aspartic acids conserved in human monocarboxylate transporters 1, 2, and 4., Yamaguchi A, Narumi K, Furugen A, Iseki K, Kobayashi M., Biochem Biophys Res Commun. September 3, 2020; 529 (4): 1061-1065.            


The γ-hydroxybutyric acid (GHB) analogue NCS-382 is a substrate for both monocarboxylate transporters subtypes 1 and 4., Thiesen L, Belew ZM, Griem-Krey N, Pedersen SF, Crocoll C, Nour-Eldin HH, Wellendorph P., Eur J Pharm Sci. February 15, 2020; 143 105203.


Conservation and divergence of protein pathways in the vertebrate heart., Federspiel JD, Tandon P, Wilczewski CM, Wasson L, Herring LE, Venkatesh SS, Cristea IM, Conlon FL., PLoS Biol. September 6, 2019; 17 (9): e3000437.                                                    


Catalytically inactive carbonic anhydrase-related proteins enhance transport of lactate by MCT1., Aspatwar A, Tolvanen MEE, Schneider HP, Becker HM, Narkilahti S, Parkkila S, Deitmer JW., FEBS Open Bio. July 1, 2019; 9 (7): 1204-1211.    


Transport Mechanisms for the Nutritional Supplement β-Hydroxy-β-Methylbutyrate (HMB) in Mammalian Cells., Ogura J, Sato T, Higuchi K, Bhutia YD, Babu E, Masuda M, Miyauchi S, Rueda R, Pereira SL, Ganapathy V., Pharm Res. April 17, 2019; 36 (6): 84.


Lack of evidence for synaptic high-affinity γ-hydroxybutyric acid (GHB) transport in rat brain synaptosomes and 11 Na+ -dependent SLC neurotransmitter transporters., Thiesen L, Frølund B, Wellendorph P., J Neurochem. April 1, 2019; 149 (2): 195-210.


Energy Dynamics in the Brain: Contributions of Astrocytes to Metabolism and pH Homeostasis., Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM., Front Neurosci. March 15, 2019; 13 1301.  


Membrane-anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70., Forero-Quintero LS, Ames S, Schneider HP, Thyssen A, Boone CD, Andring JT, McKenna R, Casey JR, Deitmer JW, Becker HM., J Biol Chem. January 11, 2019; 294 (2): 593-607.


Preclinical Efficacy of the Novel Monocarboxylate Transporter 1 Inhibitor BAY-8002 and Associated Markers of Resistance., Quanz M, Bender E, Kopitz C, Grünewald S, Schlicker A, Schwede W, Eheim A, Toschi L, Neuhaus R, Richter C, Toedling J, Merz C, Lesche R, Kamburov A, Siebeneicher H, Bauser M, Hägebarth A., Mol Cancer Ther. November 1, 2018; 17 (11): 2285-2296.


The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells., Ames S, Pastorekova S, Becker HM., Oncotarget. June 15, 2018; 9 (46): 27940-27957.                    


Asymmetric distribution of biomolecules of maternal origin in the Xenopus laevis egg and their impact on the developmental plan., Sindelka R, Abaffy P, Qu Y, Tomankova S, Sidova M, Naraine R, Kolar M, Peuchen E, Sun L, Dovichi N, Kubista M., Sci Rep. May 29, 2018; 8 (1): 8315.                


A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells., Noor SI, Jamali S, Ames S, Langer S, Deitmer JW, Becker HM., Elife. May 29, 2018; 7                               


Interruption of lactate uptake by inhibiting mitochondrial pyruvate transport unravels direct antitumor and radiosensitizing effects., Corbet C, Bastien E, Draoui N, Doix B, Mignion L, Jordan BF, Marchand A, Vanherck JC, Chaltin P, Schakman O, Becker HM, Riant O, Feron O., Nat Commun. March 23, 2018; 9 (1): 1208.            


Reference gene identification and validation for quantitative real-time PCR studies in developing Xenopus laevis., Mughal BB, Leemans M, Spirhanzlova P, Demeneix B, Fini JB., Sci Rep. January 11, 2018; 8 (1): 496.            


Mechanism of antineoplastic activity of lonidamine., Nath K, Guo L, Nancolas B, Nelson DS, Shestov AA, Lee SC, Roman J, Zhou R, Leeper DB, Halestrap AP, Blair IA, Glickson JD., Biochim Biophys Acta. December 1, 2016; 1866 (2): 151-162.


The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters., Nancolas B, Guo L, Zhou R, Nath K, Nelson DS, Leeper DB, Blair IA, Glickson JD, Halestrap AP., Biochem J. April 1, 2016; 473 (7): 929-36.


In Vitro and In Vivo Evidence for Active Brain Uptake of the GHB Analog HOCPCA by the Monocarboxylate Transporter Subtype 1., Thiesen L, Kehler J, Clausen RP, Frølund B, Bundgaard C, Wellendorph P., J Pharmacol Exp Ther. August 1, 2015; 354 (2): 166-74.


Involvement of Histidine Residue His382 in pH Regulation of MCT4 Activity., Sasaki S, Kobayashi M, Futagi Y, Ogura J, Yamaguchi H, Iseki K., PLoS One. April 22, 2015; 10 (4): e0122738.                


Identification of key binding site residues of MCT1 for AR-C155858 reveals the molecular basis of its isoform selectivity., Nancolas B, Sessions RB, Halestrap AP., Biochem J. February 15, 2015; 466 (1): 177-88.                    


Analysis of the binding moiety mediating the interaction between monocarboxylate transporters and carbonic anhydrase II., Noor SI, Dietz S, Heidtmann H, Boone CD, McKenna R, Deitmer JW, Becker HM., J Biol Chem. February 13, 2015; 290 (7): 4476-86.


Functional characterization of 5-oxoproline transport via SLC16A1/MCT1., Sasaki S, Futagi Y, Kobayashi M, Ogura J, Iseki K., J Biol Chem. January 23, 2015; 290 (4): 2303-11.


Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function., Jamali S, Klier M, Ames S, Barros LF, McKenna R, Deitmer JW, Becker HM., Sci Rep. January 12, 2015; 5 13605.              


Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters., Klier M, Andes FT, Deitmer JW, Becker HM., J Biol Chem. January 31, 2014; 289 (5): 2765-75.


Crucial residue involved in L-lactate recognition by human monocarboxylate transporter 4 (hMCT4)., Sasaki S, Kobayashi M, Futagi Y, Ogura J, Yamaguchi H, Takahashi N, Iseki K., PLoS One. July 1, 2013; 8 (7): e67690.                


The SLC16 gene family - structure, role and regulation in health and disease., Halestrap AP., Mol Aspects Med. January 1, 2013; 34 (2-3): 337-49.


Significance of short chain fatty acid transport by members of the monocarboxylate transporter family (MCT)., Moschen I, Bröer A, Galić S, Lang F, Bröer S., Neurochem Res. November 1, 2012; 37 (11): 2562-8.


Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II., Stridh MH, Alt MD, Wittmann S, Heidtmann H, Aggarwal M, Riederer B, Seidler U, Wennemuth G, McKenna R, Deitmer JW, Becker HM., J Physiol. May 15, 2012; 590 (10): 2333-51.


Transport activity of the high-affinity monocarboxylate transporter MCT2 is enhanced by extracellular carbonic anhydrase IV but not by intracellular carbonic anhydrase II., Klier M, Schüler C, Halestrap AP, Sly WS, Deitmer JW, Becker HM., J Biol Chem. August 5, 2011; 286 (31): 27781-91.


Kinetic analysis and design of experiments to identify the catalytic mechanism of the monocarboxylate transporter isoforms 4 and 1., Vinnakota KC, Beard DA., Biophys J. January 19, 2011; 100 (2): 369-80.


Rapid downregulation of the rat glutamine transporter SNAT3 by a caveolin-dependent trafficking mechanism in Xenopus laevis oocytes., Balkrishna S, Bröer A, Kingsland A, Bröer S., Am J Physiol Cell Physiol. November 1, 2010; 299 (5): C1047-57.


The inhibition of monocarboxylate transporter 2 (MCT2) by AR-C155858 is modulated by the associated ancillary protein., Ovens MJ, Manoharan C, Wilson MC, Murray CM, Halestrap AP., Biochem J. October 15, 2010; 431 (2): 217-25.              


Nonenzymatic augmentation of lactate transport via monocarboxylate transporter isoform 4 by carbonic anhydrase II., Becker HM, Klier M, Deitmer JW., J Membr Biol. April 1, 2010; 234 (2): 125-35.


AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10., Ovens MJ, Davies AJ, Wilson MC, Murray CM, Halestrap AP., Biochem J. January 15, 2010; 425 (3): 523-30.              


Studies on the DIDS-binding site of monocarboxylate transporter 1 suggest a homology model of the open conformation and a plausible translocation cycle., Wilson MC, Meredith D, Bunnun C, Sessions RB, Halestrap AP., J Biol Chem. July 24, 2009; 284 (30): 20011-21.                    


Measuring ion transport activities in Xenopus oocytes using the ion-trap technique., Blanchard MG, Longpré JP, Wallendorff B, Lapointe JY., Am J Physiol Cell Physiol. November 1, 2008; 295 (5): C1464-72.


Nonenzymatic proton handling by carbonic anhydrase II during H+-lactate cotransport via monocarboxylate transporter 1., Becker HM, Deitmer JW., J Biol Chem. August 1, 2008; 283 (31): 21655-67.


Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of L-lactate and ketone bodies in the brain., Martin PM, Gopal E, Ananth S, Zhuang L, Itagaki S, Prasad BM, Smith SB, Prasad PD, Ganapathy V., J Neurochem. July 1, 2006; 98 (1): 279-88.


The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity., Manoharan C, Wilson MC, Sessions RB, Halestrap AP., Mol Membr Biol. January 1, 2006; 23 (6): 486-98.                


Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase., Becker HM, Hirnet D, Fecher-Trost C, Sültemeyer D, Deitmer JW., J Biol Chem. December 2, 2005; 280 (48): 39882-9.


Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70)., Wilson MC, Meredith D, Fox JE, Manoharan C, Davies AJ, Halestrap AP., J Biol Chem. July 22, 2005; 280 (29): 27213-21.


Facilitated lactate transport by MCT1 when coexpressed with the sodium bicarbonate cotransporter (NBC) in Xenopus oocytes., Becker HM, Bröer S, Deitmer JW., Biophys J. January 1, 2004; 86 (1 Pt 1): 235-47.


The loop between helix 4 and helix 5 in the monocarboxylate transporter MCT1 is important for substrate selection and protein stability., Gali S, Schneider HP, Bröer A, Deitmer JW, Bröer S., Biochem J. December 1, 2003; 376 (Pt 2): 413-22.


Transport and uptake of nateglinide in Caco-2 cells and its inhibitory effect on human monocarboxylate transporter MCT1., Okamura A, Emoto A, Koyabu N, Ohtani H, Sawada Y., Br J Pharmacol. October 1, 2002; 137 (3): 391-9.


Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle., Manning Fox JE, Meredith D, Halestrap AP., J Physiol. December 1, 2000; 529 Pt 2 285-93.


The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells., Dimmer KS, Friedrich B, Lang F, Deitmer JW, Bröer S., Biochem J. August 15, 2000; 350 Pt 1 219-27.


A monocarboxylate transporter MCT1 is located at the basolateral pole of rat jejunum., Orsenigo MN, Tosco M, Bazzini C, Laforenza U, Faelli A., Exp Physiol. November 1, 1999; 84 (6): 1033-42.


The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation., Halestrap AP, Price NT., Biochem J. October 15, 1999; 343 Pt 2 281-99.


Helix 8 and helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1., Rahman B, Schneider HP, Bröer A, Deitmer JW, Bröer S., Biochemistry. August 31, 1999; 38 (35): 11577-84.


Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes., Bröer S, Bröer A, Schneider HP, Stegen C, Halestrap AP, Deitmer JW., Biochem J. August 1, 1999; 341 ( Pt 3) 529-35.

???pagination.result.page??? 1 2 ???pagination.result.next???