Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (78) GO Terms (9) Nucleotides (42) Proteins (24) Interactants (323) Wiki
XB--1018922

Papers associated with prl.2

Search for prl.2 morpholinos using Textpresso

Limit to papers also referencing gene:
6 paper(s) referencing morpholinos

Results 1 - 50 of 78 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Characterization of a novel thyrotropin-releasing hormone receptor, TRHR3, in chickens., Li X, Li Z, Deng Y, Zhang J, Li J, Wang Y., Poult Sci. March 1, 2020; 99 (3): 1643-1654.              


A novel type of prolactin expressed in the bullfrog pituitary specifically during the larval period., Okada R, Suzuki M, Ito N, Hyodo S, Kikuyama S., Gen Comp Endocrinol. January 1, 2019; 276 77-85.


Some aspects of the hypothalamic and pituitary development, metamorphosis, and reproductive behavior as studied in amphibians., Kikuyama S, Okada R, Hasunuma I, Nakada T., Gen Comp Endocrinol. January 1, 2019; 284 113212.


Adaptive correction of craniofacial defects in pre-metamorphic Xenopus laevis tadpoles involves thyroid hormone-independent tissue remodeling., Pinet K, Deolankar M, Leung B, McLaughlin KA., Development. January 1, 2019; 146 (14):                               


Opn5L1 is a retinal receptor that behaves as a reverse and self-regenerating photoreceptor., Sato K, Yamashita T, Ohuchi H, Takeuchi A, Gotoh H, Ono K, Mizuno M, Mizutani Y, Tomonari S, Sakai K, Imamoto Y, Wada A, Shichida Y., Nat Commun. January 1, 2018; 9 (1): 1255.              


Two-Element Transcriptional Regulation in the Canonical Wnt Pathway., Kim K, Cho J, Hilzinger TS, Nunns H, Liu A, Ryba BE, Goentoro L., Curr Biol. August 7, 2017; 27 (15): 2357-2364.e5.                


miR-182 Regulates Slit2-Mediated Axon Guidance by Modulating the Local Translation of a Specific mRNA., Bellon A, Iyer A, Bridi S, Lee FCY, Ovando-Vázquez C, Corradi E, Longhi S, Roccuzzo M, Strohbuecker S, Naik S, Sarkies P, Miska E, Abreu-Goodger C, Holt CE, Baudet ML., Cell Rep. January 1, 2017; 18 (5): 1171-1186.                              


Ubiquitin C-terminal hydrolase37 regulates Tcf7 DNA binding for the activation of Wnt signalling., Han W, Lee H, Han JK., Sci Rep. January 1, 2017; 7 42590.                        


Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a., Khedgikar V, Abbruzzese G, Mathavan K, Szydlo H, Cousin H, Alfandari D, Alfandari D., Elife. January 1, 2017; 6                                                             


Conservation of structure and function in vertebrate c-FLIP proteins despite rapid evolutionary change., Sakamaki K, Iwabe N, Iwata H, Imai K, Takagi C, Chiba K, Shukunami C, Tomii K, Ueno N., Biochem Biophys Rep. September 1, 2015; 3 175-189.                  


The melanocyte photosensory system in the human skin., Iyengar B., Springerplus. December 1, 2013; 2 (1): 158.                


A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome., Rienhoff HY, Yeo CY, Morissette R, Khrebtukova I, Melnick J, Luo S, Leng N, Kim YJ, Schroth G, Westwick J, Vogel H, McDonnell N, Hall JG, Whitman M., Am J Med Genet A. August 1, 2013; 161A (8): 2040-6.          


Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification., Mei W, Jin Z, Lai F, Schwend T, Houston DW, King ML, Yang J., Development. June 1, 2013; 140 (11): 2334-44.                          


Protein tyrosine phosphatase 4A3 (PTP4A3) is required for Xenopus laevis cranial neural crest migration in vivo., Maacha S, Planque N, Laurent C, Pegoraro C, Anezo O, Maczkowiak F, Monsoro-Burq AH, Saule S., PLoS One. January 1, 2013; 8 (12): e84717.              


Dishevelled limits Notch signalling through inhibition of CSL., Collu GM, Hidalgo-Sastre A, Acar A, Bayston L, Gildea C, Leverentz MK, Mills CG, Owens TW, Meurette O, Dorey K, Brennan K., Development. December 1, 2012; 139 (23): 4405-15.      


Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus., Kawaguchi A, Ochi H, Sudou N, Ogino H., Int J Dev Biol. January 1, 2012; 56 (4): 295-300.                                          


Expression of orexin receptors in the pituitary., Kaminski T, Smolinska N., Vitam Horm. January 1, 2012; 89 61-73.


Assessment of tools for marker-assisted selection in a marine commercial species: significant association between MSTN-1 gene polymorphism and growth traits., Sánchez-Ramos I, Cross I, Mácha J, Martínez-Rodríguez G, Krylov V, Rebordinos L., ScientificWorldJournal. January 1, 2012; 2012 369802.      


The nephrogenic potential of the transcription factors osr1, osr2, hnf1b, lhx1 and pax8 assessed in Xenopus animal caps., Drews C, Senkel S, Ryffel GU., BMC Dev Biol. November 15, 2011; 11 5.              


The synthetic gestagen levonorgestrel impairs metamorphosis in Xenopus laevis by disruption of the thyroid system., Lorenz C, Contardo-Jara V, Pflugmacher S, Wiegand C, Nützmann G, Lutz I, Kloas W., Toxicol Sci. September 1, 2011; 123 (1): 94-102.


A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer., Rankin SA, Rankin SA, Kormish J, Kofron M, Jegga A, Zorn AM., Dev Biol. March 15, 2011; 351 (2): 297-310.                            


Expression patterns of genes encoding small GTPases Ras-dva-1 and Ras-dva-2 in the Xenopus laevis tadpoles., Tereshina MB, Bayramov AV, Zaraisky AG., Gene Expr Patterns. January 1, 2011; 11 (1-2): 156-61.      


Isolation and characterisation of prolactin-releasing peptide in chicks and its effect on prolactin release and feeding behaviour., Tachibana T, Moriyama S, Takahashi A, Tsukada A, Oda A, Takeuchi S, Sakamoto T., J Neuroendocrinol. January 1, 2011; 23 (1): 74-81.


Polypyrimidine tract-binding protein is required for the repression of gene expression by all-trans retinoic acid., Tamanoue Y, Yamagishi M, Hongo I, Okamoto H., Dev Growth Differ. June 1, 2010; 52 (5): 469-79.                    


Xenopus RCOR2 (REST corepressor 2) interacts with ZMYND8, which is involved in neural differentiation., Zeng W, Kong Q, Li C, Mao B., Biochem Biophys Res Commun. April 16, 2010; 394 (4): 1024-9.                  


A novel prolactin-like protein (PRL-L) gene in chickens and zebrafish: cloning and characterization of its tissue expression., Wanga Y, Li J, Yan Kwok AH, Ge W, Leung FC., Gen Comp Endocrinol. March 1, 2010; 166 (1): 200-10.


Secreted factor FAM3C (ILEI) is involved in retinal laminar formation., Katahira T, Nakagiri S, Terada K, Furukawa T., Biochem Biophys Res Commun. February 12, 2010; 392 (3): 301-6.          


Cryptochrome genes are highly expressed in the ovary of the African clawed frog, Xenopus tropicalis., Kubo Y, Takeuchi T, Okano K, Okano T., PLoS One. February 2, 2010; 5 (2): e9273.        


Corticosteroids disrupt amphibian metamorphosis by complex modes of action including increased prolactin expression., Lorenz C, Opitz R, Lutz I, Kloas W., Comp Biochem Physiol C Toxicol Pharmacol. August 1, 2009; 150 (2): 314-21.


Teratogenic effects of chronic treatment with corticosterone on tadpoles of Xenopus laevis., Lorenz C, Opitz R, Lutz I, Kloas W., Ann N Y Acad Sci. April 1, 2009; 1163 454-6.


HIF-1alpha signaling upstream of NKX2.5 is required for cardiac development in Xenopus., Nagao K, Taniyama Y, Kietzmann T, Doi T, Komuro I, Morishita R., J Biol Chem. April 25, 2008; 283 (17): 11841-9.                        


Differential distribution of orexin-A-like and orexin receptor 1 (OX1R)-like immunoreactivities in the Xenopus pituitary., Suzuki H, Takemoto Y, Yamamoto T., Tissue Cell. December 1, 2007; 39 (6): 423-30.


Molecular cloning and functional characterization of a prolactin-releasing peptide homolog from Xenopus laevis., Sakamoto T, Oda A, Yamamoto K, Kaneko M, Kikuyama S, Nishikawa A, Takahashi A, Kawauchi H, Tsutsui K, Fujimoto M., Peptides. December 1, 2006; 27 (12): 3347-51.


Expression and promoter analysis of Xenopus DMRT1 and functional characterization of the transactivation property of its protein., Yoshimoto S, Okada E, Oishi T, Numagami R, Umemoto H, Tamura K, Tamura K, Kanda H, Shiba T, Takamatsu N, Ito M., Dev Growth Differ. December 1, 2006; 48 (9): 597-603.        


Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction., Satow R, Kurisaki A, Chan TC, Hamazaki TS, Asashima M., Dev Cell. December 1, 2006; 11 (6): 763-74.              


Temporal and spatial expression patterns of FoxN genes in Xenopus laevis embryos., Schuff M, Rössner A, Donow C, Knöchel W., Int J Dev Biol. January 1, 2006; 50 (4): 429-34.      


Determination of the minimal domains of Mix.3/Mixer required for endoderm development., Doherty JR, Zhu H, Kuliyev E, Mead PE., Mech Dev. January 1, 2006; 123 (1): 56-66.                  


RanBP3 enhances nuclear export of active (beta)-catenin independently of CRM1., Hendriksen J, Fagotto F, van der Velde H, van Schie M, Noordermeer J, Fornerod M., J Cell Biol. December 5, 2005; 171 (5): 785-97.                  


Functional role of a novel ternary complex comprising SRF and CREB in expression of Krox-20 in early embryos of Xenopus laevis., Watanabe T, Hongo I, Kidokoro Y, Okamoto H., Dev Biol. January 15, 2005; 277 (2): 508-21.                


Activity and expression of Xenopus laevis matrix metalloproteinases: identification of a novel role for the hormone prolactin in regulating collagenolysis in both amphibians and mammals., Jung JC, West-Mays JA, Stramer BM, Byrne MH, Scott S, Mody MK, Sadow PM, Krane SM, Fini ME., J Cell Physiol. October 1, 2004; 201 (1): 155-64.


Xenopus death receptor-M1 and -M2, new members of the tumor necrosis factor receptor superfamily, trigger apoptotic signaling by differential mechanisms., Tamura K, Noyama T, Ishizawa YH, Takamatsu N, Shiba T, Ito M., J Biol Chem. February 27, 2004; 279 (9): 7629-35.              


Integration of multiple signal transducing pathways on Fgf response elements of the Xenopus caudal homologue Xcad3., Haremaki T, Tanaka Y, Hongo I, Yuge M, Okamoto H., Development. October 1, 2003; 130 (20): 4907-17.                  


Differential distribution of melatonin receptors in the pituitary gland of Xenopus laevis., Wiechmann AF, Vrieze MJ, Wirsig-Wiechmann CR., Anat Embryol (Berl). March 1, 2003; 206 (4): 291-9.


Tissue-specific regulation of type III iodothyronine 5-deiodinase gene expression mediates the effects of prolactin and growth hormone in Xenopus metamorphosis., Shintani N, Nohira T, Hikosaka A, Kawahara A., Dev Growth Differ. August 1, 2002; 44 (4): 327-35.


Environmental estrogens and reproductive biology in amphibians., Mosconi G, Carnevali O, Franzoni MF, Cottone E, Lutz I, Kloas W, Yamamoto K, Kikuyama S, Polzonetti-Magni AM., Gen Comp Endocrinol. April 1, 2002; 126 (2): 125-9.


Relationships between CB1 cannabinoid receptors and pituitary endocrine cells in Xenopus laevis: an immunohistochemical study., Cesa R, Guastalla A, Cottone E, Mackie K, Beltramo M, Franzoni MF., Gen Comp Endocrinol. January 1, 2002; 125 (1): 17-24.    


Identification of G protein-coupled, inward rectifier potassium channel gene products from the rat anterior pituitary gland., Gregerson KA, Flagg TP, O'Neill TJ, Anderson M, Lauring O, Horel JS, Welling PA., Endocrinology. July 1, 2001; 142 (7): 2820-32.


Xebf3 is a regulator of neuronal differentiation during primary neurogenesis in Xenopus., Pozzoli O, Bosetti A, Croci L, Consalez GG, Vetter ML., Dev Biol. May 15, 2001; 233 (2): 495-512.            


Xenopus frizzled-5: a frizzled family member expressed exclusively in the neural retina of the developing eye., Sumanas S, Ekker SC., Mech Dev. May 1, 2001; 103 (1-2): 133-6.  


The endogenous fibroblast growth factor-2 antisense gene product regulates pituitary cell growth and hormone production., Asa SL, Ramyar L, Murphy PR, Li AW, Ezzat S., Mol Endocrinol. April 1, 2001; 15 (4): 589-99.

Page(s): 1 2 Next