Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (59) GO Terms (13) Nucleotides (64) Proteins (33) Interactants (455) Wiki
XB--479264

Papers associated with mmp11

Search for mmp11 morpholinos using Textpresso

Limit to papers also referencing gene:

Results 1 - 50 of 59 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis., Shibata Y, Tanizaki Y, Shi YB, Shi YB., Cell Biosci. January 1, 2020; 10 46.                            


Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability., Marshall LN, Vivien CJ, Girardot F, Péricard L, Scerbo P, Palmier K, Demeneix BA, Coen L., Proc Natl Acad Sci U S A. January 1, 2019; 116 (9): 3614-3623.          


A unique role of thyroid hormone receptor β in regulating notochord resorption during Xenopus metamorphosis., Nakajima K, Tazawa I, Shi YB., Gen Comp Endocrinol. January 1, 2019; 277 66-72.            


Transcriptome profiling reveals male- and female-specific gene expression pattern and novel gene candidates for the control of sex determination and gonad development in Xenopus laevis., Piprek RP, Damulewicz M, Tassan JP, Kloc M, Kubiak JZ., Dev Genes Evol. January 1, 2019; 229 (2-3): 53-72.        


Opposite T3 Response of ACTG1-FOS Subnetwork Differentiate Tailfin Fate in Xenopus Tadpole and Post-hatching Axolotl., Kerdivel G, Blugeon C, Fund C, Rigolet M, Sachs LM, Buisine N., Front Endocrinol (Lausanne). January 1, 2019; 10 194.              


RXR Ligands Modulate Thyroid Hormone Signaling Competence in Young Xenopus laevis Tadpoles., Mengeling BJ, Goodson ML, Furlow JD., Endocrinology. January 1, 2018; 159 (7): 2576-2595.


Mechanisms of tail resorption during anuran metamorphosis., Nakai Y, Nakajima K, Yaoita Y., Biomol Concepts. September 26, 2017; 8 (3-4): 179-183.


Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis., Wen L, Shibata Y, Su D, Fu L, Luu N, Shi YB, Shi YB., Endocrinology. January 1, 2017; 158 (6): 1985-1998.                


Growth, Development, and Intestinal Remodeling Occurs in the Absence of Thyroid Hormone Receptor α in Tadpoles of Xenopus tropicalis., Choi J, Ishizuya-Oka A, Buchholz DR., Endocrinology. January 1, 2017; 158 (6): 1623-1633.


Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits., Lind GE, Mou TC, Tamborini L, Pomper MG, De Micheli C, Conti P, Pinto A, Hansen KB., Proc Natl Acad Sci U S A. January 1, 2017; 114 (33): E6942-E6951.


Formation of a "Pre-mouth Array" from the Extreme Anterior Domain Is Directed by Neural Crest and Wnt/PCP Signaling., Jacox L, Chen J, Rothman A, Lathrop-Marshall H, Sive H., Cell Rep. January 1, 2016; 16 (5): 1445-1455.            


Thyroid hormone-dependent development in Xenopus laevis: a sensitive screen of thyroid hormone signaling disruption by municipal wastewater treatment plant effluent., Searcy BT, Beckstrom-Sternberg SM, Beckstrom-Sternberg JS, Stafford P, Schwendiman AL, Soto-Pena J, Owen MC, Ramirez C, Phillips J, Veldhoen N, Helbing CC, Propper CR., Gen Comp Endocrinol. May 1, 2012; 176 (3): 481-92.


Characterization of Xenopus tissue inhibitor of metalloproteinases-2: a role in regulating matrix metalloproteinase activity during development., Fu L, Sun G, Fiorentino M, Shi YB., PLoS One. January 1, 2012; 7 (5): e36707.            


Cytological and morphological analyses reveal distinct features of intestinal development during Xenopus tropicalis metamorphosis., Sterling J, Fu L, Matsuura K, Shi YB., PLoS One. January 1, 2012; 7 (10): e47407.            


Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling., Day RC, Beck CW., BMC Dev Biol. November 15, 2011; 11 54.                                                


Transdifferentiation of tadpole pancreatic acinar cells to duct cells mediated by Notch and stromelysin-3., Mukhi S, Brown DD., Dev Biol. March 15, 2011; 351 (2): 311-7.        


Amphibian organ remodeling during metamorphosis: insight into thyroid hormone-induced apoptosis., Ishizuya-Oka A., Dev Growth Differ. February 1, 2011; 53 (2): 202-12.


Tissue-dependent induction of apoptosis by matrix metalloproteinase stromelysin-3 during amphibian metamorphosis., Mathew S, Fu L, Hasebe T, Ishizuya-Oka A, Shi YB., Birth Defects Res C Embryo Today. March 1, 2010; 90 (1): 55-66.


Studies on Xenopus laevis intestine reveal biological pathways underlying vertebrate gut adaptation from embryo to adult., Heimeier RA, Das B, Buchholz DR, Fiorentino M, Shi YB., Genome Biol. January 1, 2010; 11 (5): R55.                    


Differential regulation of cell type-specific apoptosis by stromelysin-3: a potential mechanism via the cleavage of the laminin receptor during tail resorption in Xenopus laevis., Mathew S, Fu L, Fiorentino M, Matsuda H, Das B, Shi YB., J Biol Chem. July 3, 2009; 284 (27): 18545-56.                  


Cell-cell interactions during remodeling of the intestine at metamorphosis in Xenopus laevis., Schreiber AM, Mukhi S, Brown DD., Dev Biol. July 1, 2009; 331 (1): 89-98.          


Molecular features of thyroid hormone-regulated skin remodeling in Xenopus laevis during metamorphosis., Suzuki K, Machiyama F, Nishino S, Watanabe Y, Kashiwagi K, Kashiwagi A, Yoshizato K., Dev Growth Differ. May 1, 2009; 51 (4): 411-27.                


Mutational analysis of the cleavage of the cancer-associated laminin receptor by stromelysin-3 reveals the contribution of flanking sequences to site recognition and cleavage efficiency., Fiorentino M, Fu L, Shi YB., Int J Mol Med. March 1, 2009; 23 (3): 389-97.


Genome-wide identification of Xenopus matrix metalloproteinases: conservation and unique duplications in amphibians., Fu L, Das B, Mathew S, Shi YB., BMC Genomics. February 17, 2009; 10 81.                  


Regulation of adult intestinal epithelial stem cell development by thyroid hormone during Xenopus laevis metamorphosis., Ishizuya-Oka A, Shi YB., Dev Dyn. December 1, 2007; 236 (12): 3358-68.            


Regulation of extracellular matrix remodeling and cell fate determination by matrix metalloproteinase stromelysin-3 during thyroid hormone-dependent post-embryonic development., Shi YB, Fu L, Hasebe T, Ishizuya-Oka A., Pharmacol Ther. December 1, 2007; 116 (3): 391-400.


A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis., Sato Y, Buchholz DR, Paul BD, Shi YB, Shi YB., Mech Dev. July 1, 2007; 124 (6): 476-88.              


Regeneration of the amphibian intestinal epithelium under the control of stem cell niche., Ishizuya-Oka A., Dev Growth Differ. February 1, 2007; 49 (2): 99-107.            


Expression of matrix metalloproteinase genes in regressing or remodeling organs during amphibian metamorphosis., Fujimoto K, Nakajima K, Yaoita Y., Dev Growth Differ. February 1, 2007; 49 (2): 131-43.


Roles of Matrix Metalloproteinases and ECM Remodeling during Thyroid Hormone-Dependent Intestinal Metamorphosis in Xenopus laevis., Fu L, Hasebe T, Ishizuya-Oka A, Shi YB., Organogenesis. January 1, 2007; 3 (1): 14-9.        


Transcriptional regulation of the Xenopus laevis Stromelysin-3 gene by thyroid hormone is mediated by a DNA element in the first intron., Fu L, Tomita A, Wang H, Buchholz DR, Shi YB., J Biol Chem. June 23, 2006; 281 (25): 16870-8.


Cloning and developmental characterization of Xenopus laevis membrane type-3 matrix metalloproteinase (MT3-MMP)., Hammoud L, Walsh LA, Damjanovski S., Biochem Cell Biol. April 1, 2006; 84 (2): 167-77.  


Thyroid hormone receptor expression in the obligatory paedomorphic salamander Necturus maculosus., Vlaeminck-Guillem V, Safi R, Guillem P, Leteurtre E, Duterque-Coquillaud M, Laudet V., Int J Dev Biol. January 1, 2006; 50 (6): 553-60.


Molecular mechanisms for thyroid hormone-induced remodeling in the amphibian digestive tract: a model for studying organ regeneration., Ishizuya-Oka A, Shi YB, Shi YB., Dev Growth Differ. December 1, 2005; 47 (9): 601-7.        


Spatio-temporal regulation and cleavage by matrix metalloproteinase stromelysin-3 implicate a role for laminin receptor in intestinal remodeling during Xenopus laevis metamorphosis., Amano T, Fu L, Marshak A, Kwak O, Shi YB, Shi YB., Dev Dyn. September 1, 2005; 234 (1): 190-200.              


Matrix metalloproteinases are required for retinal ganglion cell axon guidance at select decision points., Hehr CL, Hocking JC, McFarlane S., Development. August 1, 2005; 132 (15): 3371-9.            


A causative role of stromelysin-3 in extracellular matrix remodeling and epithelial apoptosis during intestinal metamorphosis in Xenopus laevis., Fu L, Ishizuya-Oka A, Buchholz DR, Amano T, Matsuda H, Shi YB, Shi YB., J Biol Chem. July 29, 2005; 280 (30): 27856-65.


The matrix metalloproteinase stromelysin-3 cleaves laminin receptor at two distinct sites between the transmembrane domain and laminin binding sequence within the extracellular domain., Amano T, Kwak O, Fu L, Marshak A, Shi YB, Shi YB., Cell Res. March 1, 2005; 15 (3): 150-9.


A Xenopus tropicalis oligonucleotide microarray works across species using RNA from Xenopus laevis., Chalmers AD, Goldstone K, Smith JC, Gilchrist M, Amaya E, Papalopulu N., Mech Dev. March 1, 2005; 122 (3): 355-63.          


Matrix metalloproteinase stromelysin-3 in development and pathogenesis., Wei L, Shi YB., Histol Histopathol. January 1, 2005; 20 (1): 177-85.


Substrate specificity of Xenopus matrix metalloproteinase stromelysin-3., Amano T, Fu L, Sahu S, Markey M, Shi YB, Shi YB., Int J Mol Med. August 1, 2004; 14 (2): 233-9.


The axolotl (Ambystoma mexicanum), a neotenic amphibian, expresses functional thyroid hormone receptors., Safi R, Bertrand S, Marchand O, Duffraisse M, de Luze A, Vanacker JM, Maraninchi M, Margotat A, Demeneix B, Laudet V., Endocrinology. February 1, 2004; 145 (2): 760-72.


Cryopreservation of Xenopus transgenic lines., Buchholz DR, Fu L, Shi YB, Shi YB., Mol Reprod Dev. January 1, 2004; 67 (1): 65-9.


Overexpression of matrix metalloproteinases leads to lethality in transgenic Xenopus laevis: implications for tissue-dependent functions of matrix metalloproteinases during late embryonic development., Damjanovski S, Amano T, Li Q, Pei D, Shi YB, Shi YB., Dev Dyn. May 1, 2001; 221 (1): 37-47.            


Multiple stage-dependent roles for histone deacetylases during amphibian embryogenesis: implications for the involvement of extracellular matrix remodeling., Damjanovski S, Sachs LM, Shi YB, Shi YB., Int J Dev Biol. October 1, 2000; 44 (7): 769-76.                    


Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis., Ishizuya-Oka A, Li Q, Amano T, Damjanovski S, Ueda S, Shi YB., J Cell Biol. September 4, 2000; 150 (5): 1177-88.                      


Differential regulation of three thyroid hormone-responsive matrix metalloproteinase genes implicates distinct functions during frog embryogenesis., Damjanovski S, Puzianowska-Kuznicka M, Ishuzuya-Oka A, Shi YB, Shi YB., FASEB J. March 1, 2000; 14 (3): 503-10.


Spatial and temporal regulation of collagenases-3, -4, and stromelysin -3 implicates distinct functions in apoptosis and tissue remodeling during frog metamorphosis., Damjanovski S, Ishizuya-Oka A, Shi YB, Shi YB., Cell Res. June 1, 1999; 9 (2): 91-105.      


The expression pattern of thyroid hormone response genes in remodeling tadpole tissues defines distinct growth and resorption gene expression programs., Berry DL, Rose CS, Remo BF, Brown DD., Dev Biol. November 1, 1998; 203 (1): 24-35.                  


The expression pattern of thyroid hormone response genes in the tadpole tail identifies multiple resorption programs., Berry DL, Schwartzman RA, Brown DD., Dev Biol. November 1, 1998; 203 (1): 12-23.                

Page(s): 1 2 Next