Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (27) GO Terms (3) Nucleotides (318) Proteins (61) Interactants (38) Wiki
XB--480293

Papers associated with slc13a2



???displayGene.coCitedPapers???
1 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis., Ohana E, Shcheynikov N, Moe OW, Muallem S., J Am Soc Nephrol. October 1, 2013; 24 (10): 1617-26.


The sodium-dependent di- and tricarboxylate transporter, NaCT, is not responsible for the uptake of D-, L-2-hydroxyglutarate and 3-hydroxyglutarate into neurons., Brauburger K, Burckhardt G, Burckhardt BC., J Inherit Metab Dis. April 1, 2011; 34 (2): 477-82.      


Synthesis, maturation, and trafficking of human Na+-dicarboxylate cotransporter NaDC1 requires the chaperone activity of cyclophilin B., Bergeron MJ, Bürzle M, Kovacs G, Simonin A, Hediger MA., J Biol Chem. April 1, 2011; 286 (13): 11242-53.


Calcium sensitivity of dicarboxylate transport in cultured proximal tubule cells., Hering-Smith KS, Schiro FR, Pajor AM, Hamm LL., Am J Physiol Renal Physiol. February 1, 2011; 300 (2): F425-32.


ZFP423 coordinates Notch and bone morphogenetic protein signaling, selectively up-regulating Hes5 gene expression., Masserdotti G, Badaloni A, Green YS, Croci L, Barili V, Bergamini G, Vetter ML, Consalez GG., J Biol Chem. October 1, 2010; 285 (40): 30814-24.              


Use of genetic immunization to generate a high-level antibody against rat dicarboxylate transporter., Xu G, Liu A, Liu X., Int Urol Nephrol. January 1, 2009; 41 (1): 171-8.


Ala-504 is a determinant of substrate binding affinity in the mouse Na(+)/dicarboxylate cotransporter., Oshiro N, Pajor AM., Biochim Biophys Acta. June 1, 2006; 1758 (6): 781-8.


Transmembrane helices 3 and 4 are involved in substrate recognition by the Na+/dicarboxylate cotransporter, NaDC1., Oshiro N, King SC, Pajor AM., Biochemistry. February 21, 2006; 45 (7): 2302-10.


Substrate specificity of the human renal sodium dicarboxylate cotransporter, hNaDC-3, under voltage-clamp conditions., Burckhardt BC, Lorenz J, Kobbe C, Burckhardt G., Am J Physiol Renal Physiol. April 1, 2005; 288 (4): F792-9.


Expression of EGFP/SDCT1 fusion protein, subcellular localization signal analysis, tissue distribution and electrophysiological function study., Bai X, Chen X, Fen Z, Wu D, Hou K, Cheng G, Peng L., Sci China C Life Sci. December 1, 2004; 47 (6): 530-9.


OKP cells express the Na-dicarboxylate cotransporter NaDC-1., Aruga S, Pajor AM, Nakamura K, Liu L, Moe OW, Preisig PA, Alpern RJ., Am J Physiol Cell Physiol. July 1, 2004; 287 (1): C64-72.


Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates., Inoue K, Fei YJ, Zhuang L, Gopal E, Miyauchi S, Ganapathy V., Biochem J. March 15, 2004; 378 (Pt 3): 949-57.


Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates., Inoue K, Fei YJ, Huang W, Zhuang L, Chen Z, Ganapathy V., Biochem J. October 15, 2002; 367 (Pt 2): 313-9.


Conformationally sensitive residues in transmembrane domain 9 of the Na+/dicarboxylate co-transporter., Pajor AM., J Biol Chem. August 10, 2001; 276 (32): 29961-8.


Role of cationic amino acids in the Na+/dicarboxylate co-transporter NaDC-1., Pajor AM, Kahn ES, Gangula R., Biochem J. September 15, 2000; 350 Pt 3 677-83.


Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney., Pajor AM, Sun NN., Am J Physiol Renal Physiol. September 1, 2000; 279 (3): F482-90.


Cysteine residues in the Na+/dicarboxylate co-transporter, NaDC-1., Pajor AM, Krajewski SJ, Sun N, Gangula R., Biochem J. November 15, 1999; 344 Pt 1 205-9.


Protein kinase C-mediated regulation of the renal Na(+)/dicarboxylate cotransporter, NaDC-1., Pajor AM, Sun N., Biochim Biophys Acta. August 20, 1999; 1420 (1-2): 223-30.


Acidic residues involved in cation and substrate interactions in the Na+/dicarboxylate cotransporter, NaDC-1., Griffith DA, Pajor AM., Biochemistry. June 8, 1999; 38 (23): 7524-31.


Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter., Chen X, Tsukaguchi H, Chen XZ, Berger UV, Hediger MA., J Clin Invest. April 1, 1999; 103 (8): 1159-68.


Sodium-coupled transporters for Krebs cycle intermediates., Pajor AM., Annu Rev Physiol. January 1, 1999; 61 663-82.


Characterization of a rat Na+-dicarboxylate cotransporter., Chen XZ, Shayakul C, Berger UV, Tian W, Hediger MA., J Biol Chem. August 14, 1998; 273 (33): 20972-81.


Sodium and lithium interactions with the Na+/Dicarboxylate cotransporter., Pajor AM, Hirayama BA, Loo DD., J Biol Chem. July 24, 1998; 273 (30): 18923-9.


Mutational analysis of histidine residues in the rabbit Na+/dicarboxylate co-transporter NaDC-1., Pajor AM, Sun N, Valmonte HG., Biochem J. April 1, 1998; 331 ( Pt 1) 257-64.


Functional differences between rabbit and human Na(+)-dicarboxylate cotransporters, NaDC-1 and hNaDC-1., Pajor AM, Sun N., Am J Physiol. November 1, 1996; 271 (5 Pt 2): F1093-9.


Expression of the renal Na+/dicarboxylate cotransporter, NaDC-1, in COS-7 cells., Pajor AM, Valmonte HG., Pflugers Arch. February 1, 1996; 431 (4): 645-51.


Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter., Pajor AM., J Biol Chem. March 17, 1995; 270 (11): 5779-85.

???pagination.result.page??? 1