Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (84) GO Terms (17) Nucleotides (101) Proteins (26) Interactants (956) Wiki
XB--480716

Papers associated with six1

Search for six1 morpholinos using Textpresso

Limit to papers also referencing gene:
15 paper(s) referencing morpholinos

Results 1 - 50 of 84 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Prdm12 Directs Nociceptive Sensory Neuron Development by Regulating the Expression of the NGF Receptor TrkA., Desiderio S, Vermeiren S, Van Campenhout C, Kricha S, Malki E, Richts S, Fletcher EV, Vanwelden T, Schmidt BZ, Henningfeld KA, Pieler T, Woods CG, Nagy V, Verfaillie C, Bellefroid EJ., Cell Rep. March 26, 2019; 26 (13): 3522-3536.e5.                  


Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation., Sullivan CH, Majumdar HD, Neilson KM, Moody SA., Dev Biol. January 1, 2019; 446 (1): 68-79.


A Critical E-box in Barhl1 3'' Enhancer Is Essential for Auditory Hair Cell Differentiation., Hou K, Jiang H, Karim MR, Zhong C, Xu Z, Liu L, Guan M, Shao J, Huang X., Cells. January 1, 2019; 8 (5):               


Anosmin-1 is essential for neural crest and cranial placodes formation in Xenopus., Bae CJ, Hong CS, Saint-Jeannet JP., Biochem Biophys Res Commun. January 1, 2018; 495 (3): 2257-2263.        


Control of neural crest induction by MarvelD3-mediated attenuation of JNK signalling., Vacca B, Sanchez-Heras E, Steed E, Busson SL, Balda MS, Ohnuma SI, Sasai N, Mayor R, Matter K., Sci Rep. January 1, 2018; 8 (1): 1204.                              


Neural crest development in Xenopus requires Protocadherin 7 at the lateral neural crest border., Bradley RS., Mech Dev. January 1, 2018; 149 41-52.                


Ketamine Modulates Zic5 Expression via the Notch Signaling Pathway in Neural Crest Induction., Shi Y, Shi Y, Li J, Chen C, Xia Y, Li Y, Zhang P, Xu Y, Li T, Zhou W, Song W., Front Mol Neurosci. January 1, 2018; 11 9.          


Histone deacetylase activity has an essential role in establishing and maintaining the vertebrate neural crest., Rao A, LaBonne C., Development. January 1, 2018; 145 (15):                           


The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/β-catenin signaling., Hong CS, Saint-Jeannet JP., Dev Biol. January 1, 2018; 442 (1): 162-172.                


A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis., Maharana SK, Schlosser G., BMC Biol. January 1, 2018; 16 (1): 79.                            


Xenopus SOX5 enhances myogenic transcription indirectly through transrepression., Della Gaspera B, Chesneau A, Weill L, Charbonnier F, Chanoine C., Dev Biol. January 1, 2018; 442 (2): 262-275.                    


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S, Vega-López GA, Palacio MB, Tríbulo C, Aybar MJ, Aybar MJ., Mech Dev. January 1, 2018; 154 219-239.                      


Fam46a regulates BMP-dependent pre-placodal ectoderm differentiation in Xenopus., Watanabe T, Yamamoto T, Tsukano K, Hirano S, Horikawa A, Michiue T., Development. January 1, 2018; 145 (20):                                     


Shared evolutionary origin of vertebrate neural crest and cranial placodes., Horie R, Hazbun A, Chen K, Cao C, Levine M, Horie T., Nature. January 1, 2018; 560 (7717): 228-232.      


The neural border: Induction, specification and maturation of the territory that generates neural crest cells., Pla P, Monsoro-Burq AH., Dev Biol. January 1, 2018; 444 Suppl 1 S36-S46.    


Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt and FGF signaling., Watanabe T, Kanai Y, Matsukawa S, Michiue T., Genesis. October 31, 2017; .


Pax2/Pax8-defined subdomains and the occurrence of apoptosis in the posterior placodal area of mice., Washausen S, Knabe W., Brain Struct Funct. August 1, 2017; 222 (6): 2671-2695.


De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development., Gordon CT, Xue S, Yigit G, Filali H, Chen K, Rosin N, Yoshiura KI, Oufadem M, Beck TJ, McGowan R, Magee AC, Altmüller J, Dion C, Thiele H, Gurzau AD, Nürnberg P, Meschede D, Mühlbauer W, Okamoto N, Varghese V, Irving R, Sigaudy S, Williams D, Ahmed SF, Bonnard C, Kong MK, Ratbi I, Fejjal N, Fikri M, Elalaoui SC, Reigstad H, Bole-Feysot C, Nitschké P, Ragge N, Lévy N, Tunçbilek G, Teo AS, Cunningham ML, Sefiani A, Kayserili H, Murphy JM, Chatdokmaiprai C, Hillmer AM, Wattanasirichaigoon D, Lyonnet S, Magdinier F, Javed A, Blewitt ME, Amiel J, Wollnik B, Reversade B., Nat Genet. February 1, 2017; 49 (2): 249-255.        


Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development., Neilson KM, Abbruzzesse G, Kenyon K, Bartolo V, Krohn P, Alfandari D, Alfandari D, Moody SA., Dev Biol. January 15, 2017; 421 (2): 171-182.                    


Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates., Marchak A, Grant PA, Neilson KM, Datta Majumdar H, Yaklichkin S, Johnson D, Moody SA., Dev Biol. January 1, 2017; 429 (1): 213-224.                    


Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes., Riddiford N, Schlosser G., Dev Biol. January 1, 2017; 431 (2): 152-167.                            


Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes., Riddiford N, Schlosser G., Elife. March 28, 2016; 5                                                   


Using Xenopus to study genetic kidney diseases., Lienkamp SS., Semin Cell Dev Biol. March 1, 2016; 51 117-24.


Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome., Adams DS, Uzel SG, Akagi J, Wlodkowic D, Andreeva V, Yelick PC, Devitt-Lee A, Pare JF, Levin M., J Physiol. January 1, 2016; 594 (12): 3245-70.                              


Using Xenopus to discover new genes involved in branchiootorenal spectrum disorders., Moody SA, Neilson KM, Kenyon KL, Alfandari D, Alfandari D, Pignoni F., Comp Biochem Physiol C Toxicol Pharmacol. December 1, 2015; 178 16-24.


Zic1 controls placode progenitor formation non-cell autonomously by regulating retinoic acid production and transport., Jaurena MB, Juraver-Geslin H, Devotta A, Saint-Jeannet JP., Nat Commun. June 23, 2015; 6 7476.            


The requirement of histone modification by PRDM12 and Kdm4a for the development of pre-placodal ectoderm and neural crest in Xenopus., Matsukawa S, Miwata K, Asashima M, Michiue T., Dev Biol. March 1, 2015; 399 (1): 164-176.                    


Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development., Yan B, Neilson KM, Ranganathan R, Maynard T, Streit A, Moody SA., Dev Dyn. February 1, 2015; 244 (2): 181-210.                    


Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context., Jahan I, Pan N, Fritzsch B., Front Cell Neurosci. January 1, 2015; 9 26.  


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM, Hawrot K, Sharpe C, Noble A, Wood WM, Jorge EC, Goldhamer DJ, Kardon G, Dietrich S., Front Aging Neurosci. January 1, 2015; 7 62.                                            


Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm., Nordin K, LaBonne C., Dev Cell. November 10, 2014; 31 (3): 374-382.                              


Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates., Yajima H, Suzuki M, Ochi H, Ikeda K, Sato S, Yamamura K, Ogino H, Ueno N, Kawakami K., BMC Biol. October 3, 2014; 12 40.                        


Early embryonic specification of vertebrate cranial placodes., Schlosser G., Wiley Interdiscip Rev Dev Biol. September 1, 2014; 3 (5): 349-63.


The evolutionary history of vertebrate cranial placodes--I: cell type evolution., Patthey C, Schlosser G, Shimeld SM., Dev Biol. May 1, 2014; 389 (1): 82-97.        


The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning., Schlosser G, Patthey C, Shimeld SM., Dev Biol. May 1, 2014; 389 (1): 98-119.            


Setting appropriate boundaries: fate, patterning and competence at the neural plate border., Groves AK, LaBonne C., Dev Biol. May 1, 2014; 389 (1): 2-12.    


Sp8 regulates inner ear development., Chung HA, Medina-Ruiz S, Harland RM., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.                                                    


Identification of Pax3 and Zic1 targets in the developing neural crest., Bae CJ, Park BY, Lee YH, Lee YH, Tobias JW, Hong CS, Saint-Jeannet JP., Dev Biol. February 15, 2014; 386 (2): 473-83.                  


Xenopus Nkx6.3 is a neural plate border specifier required for neural crest development., Zhang Z, Shi Y, Shi Y, Zhao S, Li J, Li C, Mao B., PLoS One. January 1, 2014; 9 (12): e115165.          


Developmental expression of Pitx2c in Xenopus trigeminal and profundal placodes., Jeong YH, Park BK, Saint-Jeannet JP, Lee YH, Lee YH., Int J Dev Biol. January 1, 2014; 58 (9): 701-4.        


Probing the Xenopus laevis inner ear transcriptome for biological function., Powers TR, Virk SM, Trujillo-Provencio C, Serrano EE., BMC Genomics. July 16, 2012; 13 225.            


PRC2 during vertebrate organogenesis: A complex in transition., Aldiri I, Vetter ML., Dev Biol. July 15, 2012; 367 (2): 91-9.


New developments in the second heart field., Zaffran S, Kelly RG., Differentiation. July 1, 2012; 84 (1): 17-24.


Sim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis., Havis E, Coumailleau P, Bonnet A, Bismuth K, Bonnin MA, Johnson R, Fan CM, Relaix F, Shi DL, Duprez D., Development. June 1, 2012; 139 (11): 1910-20.                    


Transcription factors involved in lens development from the preplacodal ectoderm., Ogino H, Ochi H, Reza HM, Yasuda K., Dev Biol. March 15, 2012; 363 (2): 333-47.      


Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm., Pieper M, Ahrens K, Rink E, Peter A, Schlosser G., Development. March 1, 2012; 139 (6): 1175-87.                    


RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm., Janesick A, Shiotsugu J, Taketani M, Blumberg B., Development. March 1, 2012; 139 (6): 1213-24.                        


ΔNp63 is regulated by BMP4 signaling and is required for early epidermal development in Xenopus., Tríbulo C, Guadalupe Barrionuevo M, Agüero TH, Sánchez SS, Calcaterra NB, Aybar MJ., Dev Dyn. February 1, 2012; 241 (2): 257-69.            


The LIM adaptor protein LMO4 is an essential regulator of neural crest development., Ochoa SD, Salvador S, LaBonne C., Dev Biol. January 15, 2012; 361 (2): 313-25.              


Origin and segregation of cranial placodes in Xenopus laevis., Pieper M, Eagleson GW, Wosniok W, Schlosser G., Dev Biol. December 15, 2011; 360 (2): 257-75.                        

Page(s): 1 2 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.12.0


Major funding for Xenbase is provided by grant P41 HD064556