Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (31) GO Terms (49) Nucleotides (3466) Proteins (66) Interactants (761) Wiki
XB--484021

Papers associated with prmt1

Search for prmt1 morpholinos using Textpresso

Limit to papers also referencing gene:
2 paper(s) referencing morpholinos

Results 1 - 31 of 31 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons., Belrose JL, Prasad A, Sammons MA, Gibbs KM, Szaro BG., BMC Genomics. August 5, 2020; 21 (1): 540.                  


Knocking out histone methyltransferase PRMT1 leads to stalled tadpole development and lethality in Xenopus tropicalis., Shibata Y, Okada M, Miller TC, Shi YB, Shi YB., Biochim Biophys Acta Gen Subj. January 1, 2020; 1864 (3): 129482.


Role of epigenetics and miRNAs in orofacial clefts., Garland MA, Sun B, Zhang S, Reynolds K, Ji Y, Zhou CJ., Birth Defects Res. January 1, 2020; 112 (19): 1635-1659.


Involvement of epigenetic modifications in thyroid hormone-dependent formation of adult intestinal stem cells during amphibian metamorphosis., Fu L, Yin J, Shi YB., Gen Comp Endocrinol. January 1, 2019; 271 91-96.      


Conservation and divergence of protein pathways in the vertebrate heart., Federspiel JD, Tandon P, Wilczewski CM, Wasson L, Herring LE, Venkatesh SS, Cristea IM, Conlon FL., PLoS Biol. January 1, 2019; 17 (9): e3000437.                                                    


Trpc1 as the Missing Link Between the Bmp and Ca2+ Signalling Pathways During Neural Specification in Amphibians., Néant I, Leung HC, Webb SE, Miller AL, Miller AL, Moreau M, Leclerc C., Sci Rep. January 1, 2019; 9 (1): 16049.                                    


Developmental expression of three prmt genes in Xenopus., Wang CD, Wang CD, Wang CD, Guo XF, Wong TCB, Wang H, Qi XF, Cai DQ, Deng Y, Zhao H., Zool Res. August 20, 2018;                                           


The balance of two opposing factors Mad and Myc regulates cell fate during tissue remodeling., Okada M, Shi YB, Shi YB., Cell Biosci. January 1, 2018; 8 51.          


Frogs model man: In vivo thyroid hormone signaling during development., Sachs LM, Buchholz DR., Genesis. January 1, 2017; 55 (1-2):       


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z, Lei A, Xu L, Chen L, Chen Y, Chen Y, Zhang X, Gao Y, Yang X, Zhang M, Cao Y, Cao Y., J Biol Chem. January 1, 2017; 292 (31): 12842-12859.        


Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus., Néant I, Mellström B, Gonzalez P, Naranjo JR, Moreau M, Leclerc C., Biochim Biophys Acta. September 1, 2015; 1853 (9): 2077-85.  


Epigenetic regulation of thyroid hormone-induced adult intestinal stem cell development during anuran metamorphosis., Sun G, Fu L, Shi YB., Cell Biosci. January 1, 2014; 4 73.      


Thyroid hormone activates protein arginine methyltransferase 1 expression by directly inducing c-Myc transcription during Xenopus intestinal stem cell development., Fujimoto K, Matsuura K, Hu-Wang E, Lu R, Shi YB., J Biol Chem. March 23, 2012; 287 (13): 10039-50.


Evolutionarily conserved protein arginine methyltransferases in non-mammalian animal systems., Wang YC, Li C., FEBS J. March 1, 2012; 279 (6): 932-45.


Thyroid hormone regulation of adult intestinal stem cell development: mechanisms and evolutionary conservations., Sun G, Shi YB., Int J Biol Sci. January 1, 2012; 8 (8): 1217-24.      


Dishevelled3 is a novel arginine methyl transferase substrate., Bikkavilli RK, Avasarala S, Vanscoyk M, Sechler M, Kelley N, Malbon CC, Winn RA., Sci Rep. January 1, 2012; 2 805.          


The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis., Shi YB, Hasebe T, Fu L, Fujimoto K, Ishizuya-Oka A., Cell Biosci. September 6, 2011; 1 (1): 30.        


An essential and evolutionarily conserved role of protein arginine methyltransferase 1 for adult intestinal stem cells during postembryonic development., Matsuda H, Shi YB., Stem Cells. November 1, 2010; 28 (11): 2073-83.


Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis., Matsuda H, Paul BD, Choi CY, Hasebe T, Shi YB., Mol Cell Biol. February 1, 2009; 29 (3): 745-57.


Methylation of Xilf3 by Xprmt1b alters its DNA, but not RNA, binding activity., Cazanove O, Batut J, Scarlett G, Mumford K, Elgar S, Thresh S, Neant I, Moreau M, Guille M., Biochemistry. August 12, 2008; 47 (32): 8350-7.


Functional characterization of PCFT/HCP1 as the molecular entity of the carrier-mediated intestinal folate transport system in the rat model., Inoue K, Nakai Y, Ueda S, Kamigaso S, Ohta KY, Hatakeyama M, Hayashi Y, Otagiri M, Yuasa H., Am J Physiol Gastrointest Liver Physiol. March 1, 2008; 294 (3): G660-8.


Heme carrier protein 1 (HCP1) expression and functional analysis in the retina and retinal pigment epithelium., Sharma S, Dimasi D, Bröer S, Kumar R, Della NG., Exp Cell Res. April 1, 2007; 313 (6): 1251-9.


RAP55, a cytoplasmic mRNP component, represses translation in Xenopus oocytes., Tanaka KJ, Ogawa K, Takagi M, Imamoto N, Matsumoto K, Tsujimoto M., J Biol Chem. December 29, 2006; 281 (52): 40096-106.              


Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption., Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID., Cell. December 1, 2006; 127 (5): 917-28.


Cross-species hybridizations on a multi-species cDNA microarray to identify evolutionarily conserved genes expressed in oocytes., Vallée M, Robert C, Méthot S, Palin MF, Sirard MA., BMC Genomics. October 24, 2006; 7 113.            


The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo., Batut J, Vandel L, Leclerc C, Daguzan C, Moreau M, Néant I., Proc Natl Acad Sci U S A. October 18, 2005; 102 (42): 15128-33.                


Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species., Vallée M, Gravel C, Palin MF, Reghenas H, Stothard P, Wishart DS, Sirard MA., Biol Reprod. July 1, 2005; 73 (1): 63-71.


Analysis of Spemann organizer formation in Xenopus embryos by cDNA macroarrays., Wessely O, Kim JI, Geissert D, Tran U, De Robertis EM., Dev Biol. May 15, 2004; 269 (2): 552-66.        


Methylation of Xenopus CIRP2 regulates its arginine- and glycine-rich region-mediated nucleocytoplasmic distribution., Aoki K, Ishii Y, Matsumoto K, Tsujimoto M., Nucleic Acids Res. December 1, 2002; 30 (23): 5182-92.


Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor., Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P, Zhang Y., Science. August 3, 2001; 293 (5531): 853-7.


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V, Pollet N, Delius H, Vingron M, Pfister R, Nitsch R, Blumenstock C, Niehrs C., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            

Page(s): 1