Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (45) GO Terms (13) Nucleotides (79) Proteins (31) Interactants (860) Wiki
XB--485651

Papers associated with hnf1b

Search for hnf1b morpholinos using Textpresso

Limit to papers also referencing gene:
9 paper(s) referencing morpholinos

Results 1 - 45 of 45 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers., Suzuki N, Hirano K, Ogino H, Ochi H., Elife. January 1, 2019; 8                                       


Dynamin Binding Protein Is Required for Xenopus laevis Kidney Development., DeLay BD, Baldwin TA, Miller RK., Front Physiol. January 1, 2019; 10 143.                        


Tissue-Specific Gene Inactivation in Xenopus laevis: Knockout of lhx1 in the Kidney with CRISPR/Cas9., DeLay BD, Corkins ME, Hanania HL, Salanga M, Deng JM, Sudou N, Taira M, Horb ME, Miller RK., Genetics. January 1, 2018; 208 (2): 673-686.                        


Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis., Gere-Becker MB, Pommerenke C, Lingner T, Pieler T., Development. January 1, 2018; 145 (12):                                   


RARγ is required for mesodermal gene expression prior to gastrulation in Xenopus., Janesick A, Tang W, Shioda T, Blumberg B., Development. January 1, 2018; 145 (18):             


A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo., Blitz IL, Paraiso KD, Patrushev I, Chiu WTY, Cho KWY, Gilchrist MJ., Dev Biol. January 1, 2017; 426 (2): 409-417.        


A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs., Charney RM, Paraiso KD, Blitz IL, Cho KWY., Semin Cell Dev Biol. January 1, 2017; 66 12-24.    


Genome-wide identification of thyroid hormone receptor targets in the remodeling intestine during Xenopus tropicalis metamorphosis., Fu L, Das B, Matsuura K, Fujimoto K, Heimeier RA, Shi YB, Shi YB., Sci Rep. January 1, 2017; 7 (1): 6414.            


Znf703, a novel target of Pax3 and Zic1, regulates hindbrain and neural crest development in Xenopus., Hong CS, Saint-Jeannet JP., Genesis. January 1, 2017; 55 (12):                               


Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors., Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS., Nat Cell Biol. December 1, 2016; 18 (12): 1269-1280.                  


Xenopus as a model system for studying pancreatic development and diabetes., Kofent J, Spagnoli FM., Semin Cell Dev Biol. March 1, 2016; 51 106-16.  


Using Xenopus to study genetic kidney diseases., Lienkamp SS., Semin Cell Dev Biol. March 1, 2016; 51 117-24.


pdzrn3 is required for pronephros morphogenesis in Xenopus laevis., Marracci S, Vangelisti A, Raffa V, Andreazzoli M, Dente L., Int J Dev Biol. January 1, 2016; 60 (1-3): 57-63.                  


A novel function for Egr4 in posterior hindbrain development., Bae CJ, Jeong J, Saint-Jeannet JP., Sci Rep. September 21, 2015; 5 7750.                  


Zic1 controls placode progenitor formation non-cell autonomously by regulating retinoic acid production and transport., Jaurena MB, Juraver-Geslin H, Devotta A, Saint-Jeannet JP., Nat Commun. June 23, 2015; 6 7476.            


Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development., Buisson I, Le Bouffant R, Futel M, Riou JF, Umbhauer M., Dev Biol. January 15, 2015; 397 (2): 175-90.                            


Recessive mutations in PCBD1 cause a new type of early-onset diabetes., Simaite D, Kofent J, Gong M, Rüschendorf F, Jia S, Arn P, Bentler K, Ellaway C, Kühnen P, Hoffmann GF, Blau N, Spagnoli FM, Hübner N, Raile K., Diabetes. October 1, 2014; 63 (10): 3557-64.


Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns., Zheng Z, Christley S, Chiu WT, Blitz IL, Xie X, Cho KW, Nie Q., BMC Syst Biol. January 8, 2014; 8 3.                  


HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2., Heliot C, Desgrange A, Buisson I, Prunskaite-Hyyryläinen R, Shan J, Vainio S, Umbhauer M, Cereghini S., Development. February 1, 2013; 140 (4): 873-85.  


Exon capture and bulk segregant analysis: rapid discovery of causative mutations using high-throughput sequencing., del Viso F, Bhattacharya D, Kong Y, Gilchrist MJ, Khokha MK., BMC Genomics. July 16, 2012; 13 649.                  


Thyroid hormone-dependent development in Xenopus laevis: a sensitive screen of thyroid hormone signaling disruption by municipal wastewater treatment plant effluent., Searcy BT, Beckstrom-Sternberg SM, Beckstrom-Sternberg JS, Stafford P, Schwendiman AL, Soto-Pena J, Owen MC, Ramirez C, Phillips J, Veldhoen N, Helbing CC, Propper CR., Gen Comp Endocrinol. May 1, 2012; 176 (3): 481-92.


Heat-shock mediated overexpression of HNF1β mutations has differential effects on gene expression in the Xenopus pronephric kidney., Sauert K, Kahnert S, Roose M, Gull M, Brändli AW, Ryffel GU, Waldner C., PLoS One. January 1, 2012; 7 (3): e33522.                  


Xenopus as a model system for the study of GOLPH2/GP73 function: Xenopus GOLPH2 is required for pronephros development., Li L, Wen L, Gong Y, Mei G, Liu J, Chen Y, Peng T., PLoS One. January 1, 2012; 7 (6): e38939.                                              


The nephrogenic potential of the transcription factors osr1, osr2, hnf1b, lhx1 and pax8 assessed in Xenopus animal caps., Drews C, Senkel S, Ryffel GU., BMC Dev Biol. November 15, 2011; 11 5.              


Remobilization of Tol2 transposons in Xenopus tropicalis., Yergeau DA, Kelley CM, Kuliyev E, Zhu H, Sater AK, Wells DE, Mead PE., BMC Dev Biol. July 16, 2010; 10 11.                      


The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1., Agrawal R, Tran U, Wessely O., Development. December 1, 2009; 136 (23): 3927-36.              


The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx., Rodríguez-Seguel E, Alarcón P, Gómez-Skarmeta JL., Dev Biol. May 15, 2009; 329 (2): 258-68.                


Requirement of Wnt/beta-catenin signaling in pronephric kidney development., Lyons JP, Miller RK, Zhou X, Weidinger G, Deroo T, Denayer T, Park JI, Ji H, Hong JY, Li A, Moon RT, Jones EA, Vleminckx K, Vize PD, McCrea PD., Mech Dev. March 1, 2009; 126 (3-4): 142-59.        


Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling., Li Y, Rankin SA, Rankin SA, Sinner D, Kenny AP, Krieg PA, Zorn AM., Genes Dev. November 1, 2008; 22 (21): 3050-63.                        


Transcription factor HNF1beta and novel partners affect nephrogenesis., Dudziak K, Mottalebi N, Senkel S, Edghill EL, Rosengarten S, Roose M, Bingham C, Ellard S, Ryffel GU., Kidney Int. July 1, 2008; 74 (2): 210-7.                  


Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros., Tran U, Pickney LM, Ozpolat BD, Wessely O., Dev Biol. July 1, 2007; 307 (1): 152-64.                  


FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development., Urban AE, Zhou X, Ungos JM, Raible DW, Altmann CR, Vize PD., Dev Biol. September 1, 2006; 297 (1): 103-17.                    


A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes., Proks P, Arnold AL, Bruining J, Girard C, Flanagan SE, Larkin B, Colclough K, Hattersley AT, Ashcroft FM, Ellard S., Hum Mol Genet. June 1, 2006; 15 (11): 1793-800.


GATA4, 5 and 6 mediate TGFbeta maintenance of endodermal gene expression in Xenopus embryos., Afouda BA, Ciau-Uitz A, Patient R., Development. February 1, 2005; 132 (4): 763-74.          


Global analysis of RAR-responsive genes in the Xenopus neurula using cDNA microarrays., Arima K, Shiotsugu J, Niu R, Khandpur R, Martinez M, Shin Y, Koide T, Cho KW, Kitayama A, Ueno N, Chandraratna RA, Blumberg B., Dev Dyn. February 1, 2005; 232 (2): 414-31.                          


The HNF1beta transcription factor has several domains involved in nephrogenesis and partially rescues Pax8/lim1-induced kidney malformations., Wu G, Bohn S, Ryffel GU., Eur J Biochem. September 1, 2004; 271 (18): 3715-28.


A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney., Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N., Development. August 1, 2004; 131 (16): 4085-93.


Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes., Sinner D, Rankin S, Rankin S, Lee M, Zorn AM., Development. July 1, 2004; 131 (13): 3069-80.                      


Distinct molecular and morphogenetic properties of mutations in the human HNF1beta gene that lead to defective kidney development., Bohn S, Thomas H, Turan G, Ellard S, Bingham C, Hattersley AT, Ryffel GU., J Am Soc Nephrol. August 1, 2003; 14 (8): 2033-41.


An alternative, human SRC promoter and its regulation by hepatic nuclear factor-1alpha., Bonham K, Ritchie SA, Dehm SM, Snyder K, Boyd FM., J Biol Chem. December 1, 2000; 275 (48): 37604-11.


The mutated human gene encoding hepatocyte nuclear factor 1beta inhibits kidney formation in developing Xenopus embryos., Wild W, Pogge von Strandmann E, Nastos A, Senkel S, Lingott-Frieg A, Bulman M, Bingham C, Ellard S, Hattersley AT, Ryffel GU., Proc Natl Acad Sci U S A. April 25, 2000; 97 (9): 4695-700.            


HNF1(beta) is required for mesoderm induction in the Xenopus embryo., Vignali R, Poggi L, Madeddu F, Barsacchi G., Development. April 1, 2000; 127 (7): 1455-65.    


Mesoderm and endoderm differentiation in animal cap explants: identification of the HNF4-binding site as an activin A responsive element in the Xenopus HNF1alpha promoter., Weber H, Holewa B, Jones EA, Ryffel GU., Development. June 1, 1996; 122 (6): 1975-84.              


Developmental expression of the maternal protein XDCoH, the dimerization cofactor of the homeoprotein LFB1 (HNF1)., Pogge yon Strandmann E, Ryffel GU., Development. April 1, 1995; 121 (4): 1217-26.                      


Cloning and developmental expression of LFB3/HNF1 beta transcription factor in Xenopus laevis., Demartis A, Maffei M, Vignali R, Barsacchi G, De Simone V., Mech Dev. July 1, 1994; 47 (1): 19-28.        

Page(s): 1

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.12.2


Major funding for Xenbase is provided by grant P41 HD064556