Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (67) GO Terms (2) Nucleotides (57) Proteins (39) Interactants (59) Wiki
XB--493095

Papers associated with kcnq3



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Distinctive mechanisms of epilepsy-causing mutants discovered by measuring S4 movement in KCNQ2 channels., Edmond MA, Hinojo-Perez A, Wu X, Perez Rodriguez ME, Barro-Soria R., Elife. June 1, 2022; 11                           


The Amyloid Precursor Protein C99 Fragment Modulates Voltage-Gated Potassium Channels., Manville RW, Abbott GW., Cell Physiol Biochem. July 28, 2021; 55 (S3): 157-170.


Familial neonatal seizures caused by the Kv7.3 selectivity filter mutation T313I., Maghera J, Li J, Lamothe SM, Braun M, Appendino JP, Au PYB, Kurata HT., Epilepsia Open. December 1, 2020; 5 (4): 562-573.          


Heteromeric Assembly of Truncated Neuronal Kv7 Channels: Implications for Neurologic Disease and Pharmacotherapy., Li J, Maghera J, Lamothe SM, Marco EJ, Kurata HT., Mol Pharmacol. September 1, 2020; 98 (3): 192-202.


Isoform-Selective KCNA1 Potassium Channel Openers Built from Glycine., Manville RW, Abbott GW., J Pharmacol Exp Ther. June 1, 2020; 373 (3): 391-401.


M-Channel Activation Contributes to the Anticonvulsant Action of the Ketone Body β-Hydroxybutyrate., Manville RW, Papanikolaou M, Abbott GW., J Pharmacol Exp Ther. February 1, 2020; 372 (2): 148-156.


Epilepsy-associated mutations in the voltage sensor of KCNQ3 affect voltage dependence of channel opening., Barro-Soria R., J Gen Physiol. February 4, 2019; 151 (2): 247-257.          


In silico re-engineering of a neurotransmitter to activate KCNQ potassium channels in an isoform-specific manner., Manville RW, Abbott GW., Commun Biol. January 1, 2019; 2 401.                    


Deconstruction of an African folk medicine uncovers a novel molecular strategy for therapeutic potassium channel activation., De Silva AM, Manville RW, Abbott GW., Sci Adv. November 14, 2018; 4 (11): eaav0824.            


Gabapentin Is a Potent Activator of KCNQ3 and KCNQ5 Potassium Channels., Manville RW, Abbott GW., Mol Pharmacol. October 1, 2018; 94 (4): 1155-1163.


One drug-sensitive subunit is sufficient for a near-maximal retigabine effect in KCNQ channels., Yau MC, Kim RY, Wang CK, Li J, Ammar T, Yang RY, Pless SA, Kurata HT., J Gen Physiol. October 1, 2018; 150 (10): 1421-1431.                


Ancient and modern anticonvulsants act synergistically in a KCNQ potassium channel binding pocket., Manville RW, Abbott GW., Nat Commun. September 21, 2018; 9 (1): 3845.                  


Direct neurotransmitter activation of voltage-gated potassium channels., Manville RW, Papanikolaou M, Abbott GW., Nat Commun. May 10, 2018; 9 (1): 1847.            


PIP2 mediates functional coupling and pharmacology of neuronal KCNQ channels., Kim RY, Pless SA, Kurata HT., Proc Natl Acad Sci U S A. November 7, 2017; 114 (45): E9702-E9711.                


KCNQ-SMIT complex formation facilitates ion channel-solute transporter cross talk., Neverisky DL, Abbott GW., FASEB J. July 1, 2017; 31 (7): 2828-2838.


Novel KCNQ3 Mutation in a Large Family with Benign Familial Neonatal Epilepsy: A Rare Cause of Neonatal Seizures., Maljevic S, Vejzovic S, Bernhard MK, Bertsche A, Weise S, Döcker M, Lerche H, Lemke JR, Merkenschlager A, Syrbe S., Mol Syndromol. September 1, 2016; 7 (4): 189-196.


Regulation of the neuronal KCNQ2 channel by Src--a dual rearrangement of the cytosolic termini underlies bidirectional regulation of gating., Siloni S, Singer-Lahat D, Esa M, Tsemakhovich V, Chikvashvili D, Lotan I., J Cell Sci. September 15, 2015; 128 (18): 3489-501.


Atomic basis for therapeutic activation of neuronal potassium channels., Kim RY, Yau MC, Galpin JD, Seebohm G, Ahern CA, Pless SA, Kurata HT., Nat Commun. September 3, 2015; 6 8116.                


Capturing distinct KCNQ2 channel resting states by metal ion bridges in the voltage-sensor domain., Gourgy-Hacohen O, Kornilov P, Pittel I, Peretz A, Attali B, Paas Y., J Gen Physiol. December 1, 2014; 144 (6): 513-27.                  


Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy., Orhan G, Bock M, Schepers D, Ilina EI, Reichel SN, Löffler H, Jezutkovic N, Weckhuysen S, Mandelstam S, Suls A, Danker T, Guenther E, Scheffer IE, De Jonghe P, Lerche H, Maljevic S., Ann Neurol. March 1, 2014; 75 (3): 382-94.


The linker pivot in Ci-VSP: the key to unlock catalysis., Hobiger K, Utesch T, Mroginski MA, Seebohm G, Friedrich T., PLoS One. July 1, 2013; 8 (7): e70272.            


Dysfunction of the Heteromeric KV7.3/KV7.5 Potassium Channel is Associated with Autism Spectrum Disorders., Gilling M, Rasmussen HB, Calloe K, Sequeira AF, Baretto M, Oliveira G, Almeida J, Lauritsen MB, Ullmann R, Boonen SE, Brondum-Nielsen K, Kalscheuer VM, Tümer Z, Vicente AM, Schmitt N, Tommerup N., Front Genet. April 16, 2013; 4 54.                  


The new KCNQ2 activator 4-Chlor-N-(6-chlor-pyridin-3-yl)-benzamid displays anticonvulsant potential., Boehlen A, Schwake M, Dost R, Kunert A, Fidzinski P, Heinemann U, Gebhardt C., Br J Pharmacol. March 1, 2013; 168 (5): 1182-200.


Impaired ion channel function related to a common KCNQ1 mutation - implications for risk stratification in long QT syndrome 1., Aidery P, Kisselbach J, Schweizer PA, Becker R, Katus HA, Thomas D., Gene. December 10, 2012; 511 (1): 26-33.        


De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy., Barcia G, Fleming MR, Deligniere A, Gazula VR, Brown MR, Langouet M, Chen H, Kronengold J, Abhyankar A, Cilio R, Nitschke P, Kaminska A, Boddaert N, Casanova JL, Desguerre I, Munnich A, Dulac O, Kaczmarek LK, Colleaux L, Nabbout R., Nat Genet. November 1, 2012; 44 (11): 1255-9.


Coupling of Ci-VSP modules requires a combination of structure and electrostatics within the linker., Hobiger K, Utesch T, Mroginski MA, Friedrich T., Biophys J. March 21, 2012; 102 (6): 1313-22.


Surface expression and subunit specific control of steady protein levels by the Kv7.2 helix A-B linker., Aivar P, Fernández-Orth J, Gomis-Perez C, Alberdi A, Alaimo A, Rodríguez MS, Giraldez T, Miranda P, Areso P, Villarroel A., PLoS One. January 1, 2012; 7 (10): e47263.              


Regulation of neuronal M-channel gating in an isoform-specific manner: functional interplay between calmodulin and syntaxin 1A., Etzioni A, Siloni S, Chikvashvilli D, Strulovich R, Sachyani D, Regev N, Greitzer-Antes D, Hirsch JA, Lotan I., J Neurosci. October 5, 2011; 31 (40): 14158-71.


A pore residue of the KCNQ3 potassium M-channel subunit controls surface expression., Gómez-Posada JC, Etxeberría A, Roura-Ferrer M, Areso P, Masin M, Murrell-Lagnado RD, Villarroel A., J Neurosci. July 7, 2010; 30 (27): 9316-23.


The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus., Tzingounis AV, Heidenreich M, Kharkovets T, Spitzmaul G, Jensen HS, Nicoll RA, Jentsch TJ., Proc Natl Acad Sci U S A. June 1, 2010; 107 (22): 10232-7.


The acrylamide (S)-2 as a positive and negative modulator of Kv7 channels expressed in Xenopus laevis oocytes., Blom SM, Schmitt N, Jensen HS., PLoS One. December 11, 2009; 4 (12): e8251.                  


Selective interaction of syntaxin 1A with KCNQ2: possible implications for specific modulation of presynaptic activity., Regev N, Degani-Katzav N, Korngreen A, Etzioni A, Siloni S, Alaimo A, Chikvashvili D, Villarroel A, Attali B, Lotan I., PLoS One. August 13, 2009; 4 (8): e6586.              


Coupling between the voltage-sensing and phosphatase domains of Ci-VSP., Villalba-Galea CA, Miceli F, Taglialatela M, Bezanilla F., J Gen Physiol. July 1, 2009; 134 (1): 5-14.                


Refinement of the binding site and mode of action of the anticonvulsant Retigabine on KCNQ K+ channels., Lange W, Geissendörfer J, Schenzer A, Grötzinger J, Seebohm G, Friedrich T, Schwake M., Mol Pharmacol. February 1, 2009; 75 (2): 272-80.


KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes., Neubauer BA, Waldegger S, Heinzinger J, Hahn A, Kurlemann G, Fiedler B, Eberhard F, Muhle H, Stephani U, Garkisch S, Eeg-Olofsson O, Müller U, Sander T., Neurology. July 15, 2008; 71 (3): 177-83.


Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1., Schuetz F, Kumar S, Poronnik P, Adams DJ., Am J Physiol Cell Physiol. July 1, 2008; 295 (1): C73-80.


A schizophrenia-linked mutation in PIP5K2A fails to activate neuronal M channels., Fedorenko O, Strutz-Seebohm N, Henrion U, Ureche ON, Lang F, Seebohm G, Lang UE., Psychopharmacology (Berl). July 1, 2008; 199 (1): 47-54.


Second coiled-coil domain of KCNQ channel controls current expression and subfamily specific heteromultimerization by salt bridge networks., Nakajo K, Kubo Y., J Physiol. June 15, 2008; 586 (12): 2827-40.


Neutralization of a negative charge in the S1-S2 region of the KV7.2 (KCNQ2) channel affects voltage-dependent activation in neonatal epilepsy., Wuttke TV, Penzien J, Fauler M, Seebohm G, Lehmann-Horn F, Lerche H, Jurkat-Rott K., J Physiol. January 15, 2008; 586 (2): 545-55.


Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations., Wuttke TV, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn F, Lerche H., Neurology. November 27, 2007; 69 (22): 2045-53.


Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by ubiquitination. Novel role for Nedd4-2., Ekberg J, Schuetz F, Boase NA, Conroy SJ, Manning J, Kumar S, Poronnik P, Adams DJ., J Biol Chem. April 20, 2007; 282 (16): 12135-42.


Subthreshold changes of voltage-dependent activation of the K(V)7.2 channel in neonatal epilepsy., Hunter J, Maljevic S, Shankar A, Siegel A, Weissman B, Holt P, Olson L, Lerche H, Escayg A., Neurobiol Dis. October 1, 2006; 24 (1): 194-201.


Structural determinants of M-type KCNQ (Kv7) K+ channel assembly., Schwake M, Athanasiadu D, Beimgraben C, Blanz J, Beck C, Jentsch TJ, Saftig P, Friedrich T., J Neurosci. April 5, 2006; 26 (14): 3757-66.


A spontaneous mutation involving Kcnq2 (Kv7.2) reduces M-current density and spike frequency adaptation in mouse CA1 neurons., Otto JF, Yang Y, Frankel WN, White HS, Wilcox KS., J Neurosci. February 15, 2006; 26 (7): 2053-9.


Identification by mass spectrometry and functional characterization of two phosphorylation sites of KCNQ2/KCNQ3 channels., Surti TS, Huang L, Jan YN, Jan LY, Cooper EC., Proc Natl Acad Sci U S A. December 6, 2005; 102 (49): 17828-33.


Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine., Schenzer A, Friedrich T, Pusch M, Saftig P, Jentsch TJ, Grötzinger J, Schwake M., J Neurosci. May 18, 2005; 25 (20): 5051-60.


Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior., Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D., Nat Neurosci. January 1, 2005; 8 (1): 51-60.


Three mechanisms underlie KCNQ2/3 heteromeric potassium M-channel potentiation., Etxeberria A, Santana-Castro I, Regalado MP, Aivar P, Villarroel A., J Neurosci. October 13, 2004; 24 (41): 9146-52.


The therapeutic potential of neuronal KCNQ channel modulators., Gribkoff VK., Expert Opin Ther Targets. December 1, 2003; 7 (6): 737-48.


KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum., Singh NA, Westenskow P, Charlier C, Pappas C, Leslie J, Dillon J, Anderson VE, Sanguinetti MC, Leppert MF, BFNC Physician Consortium., Brain. December 1, 2003; 126 (Pt 12): 2726-37.

???pagination.result.page??? 1 2 ???pagination.result.next???