Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (179) GO Terms (42) Nucleotides (120) Proteins (41) Interactants (325) Wiki

Papers associated with kcnq1

Search for kcnq1 morpholinos using Textpresso

Limit to papers also referencing gene:
2 paper(s) referencing morpholinos

Results 1 - 50 of 179 results

Page(s): 1 2 3 4 Next

Sort Newest To Oldest Sort Oldest To Newest

Molecular Mechanism of Autosomal Recessive Long QT-Syndrome 1 without Deafness., Oertli A, Rinné S, Moss R, Kääb S, Seemann G, Beckmann BM, Decher N., Int J Mol Sci. January 23, 2021; 22 (3):             

Compound Heterozygous KCNQ1 Mutations Causing Recessive Romano-Ward Syndrome: Functional Characterization by Mutant Co-expression., González-Garrido A, Domínguez-Pérez M, Jacobo-Albavera L, López-Ramírez O, Guevara-Chávez JG, Zepeda-García O, Iturralde P, Carnevale A, Villarreal-Molina T., Front Cardiovasc Med. January 1, 2021; 8 625449.

Familial neonatal seizures caused by the Kv7.3 selectivity filter mutation T313I., Maghera J, Li J, Lamothe SM, Braun M, Appendino JP, Au PYB, Kurata HT., Epilepsia Open. December 1, 2020; 5 (4): 562-573.          

In vitro and in vivo characterization of Lu AA41178: A novel, brain penetrant, pan-selective Kv7 potassium channel opener with efficacy in preclinical models of epileptic seizures and psychiatric disorders., Grupe M, Bentzen BH, Benned-Jensen T, Nielsen V, Frederiksen K, Jensen HS, Jacobsen AM, Skibsbye L, Sams AG, Grunnet M, Rottländer M, Bastlund JF., Eur J Pharmacol. November 15, 2020; 887 173440.

4,4''-Diisothiocyanato-2,2''-Stilbenedisulfonic Acid (DIDS) Modulates the Activity of KCNQ1/KCNE1 Channels by an Interaction with the Central Pore Region., Bollmann E, Schreiber JA, Ritter N, Peischard S, Ho HT, Wünsch B, Strünker T, Meuth S, Budde T, Strutz-Seebohm N, Seebohm G., Cell Physiol Biochem. April 8, 2020; 54 (2): 321-332.

Structure and physiological function of the human KCNQ1 channel voltage sensor intermediate state., Taylor KC, Kang PW, Hou P, Yang ND, Kuenze G, Smith JA, Shi J, Huang H, White KM, Peng D, George AL, Meiler J, McFeeters RL, Cui J, Sanders CR., Elife. January 1, 2020; 9                                     

Polyunsaturated fatty acid-derived IKs channel activators shorten the QT interval ex-vivo and in-vivo., Skarsfeldt MA, Liin SI, Larsson HP, Bentzen BH., Acta Physiol (Oxf). January 1, 2020; 229 (4): e13471.

Probing the Dynamics and Structural Topology of the Reconstituted Human KCNQ1 Voltage Sensor Domain (Q1-VSD) in Lipid Bilayers Using Electron Paramagnetic Resonance Spectroscopy., Dixit G, Sahu ID, Reynolds WD, Wadsworth TM, Harding BD, Jaycox CK, Dabney-Smith C, Sanders CR, Lorigan GA., Biochemistry. January 1, 2019; 58 (7): 965-973.

ML277 specifically enhances the fully activated open state of KCNQ1 by modulating VSD-pore coupling., Hou P, Shi J, White KM, Gao Y, Cui J., Elife. January 1, 2019; 8                     

In silico re-engineering of a neurotransmitter to activate KCNQ potassium channels in an isoform-specific manner., Manville RW, Abbott GW., Commun Biol. January 1, 2019; 2 401.                    

Cilantro leaf harbors a potent potassium channel-activating anticonvulsant., Manville RW, Abbott GW., FASEB J. January 1, 2019; 33 (10): 11349-11363.

KCNQ1 rescues TMC1 plasma membrane expression but not mechanosensitive channel activity., Harkcom WT, Papanikolaou M, Kanda V, Crump SM, Abbott GW., J Cell Physiol. January 1, 2019; 234 (8): 13361-13369.

Unexplained cardiac arrest: a tale of conflicting interpretations of KCNQ1 genetic test results., Chua HC, Servatius H, Asatryan B, Schaller A, Rieubland C, Noti F, Seiler J, Roten L, Baldinger SH, Tanner H, Fuhrer J, Haeberlin A, Lam A, Pless SA, Medeiros-Domingo A., Clin Res Cardiol. August 1, 2018; 107 (8): 670-678.

A novel α-conopeptide Eu1.6 inhibits N-type (CaV2.2) calcium channels and exhibits potent analgesic activity., Liu Z, Bartels P, Sadeghi M, Du T, Dai Q, Zhu C, Yu S, Wang S, Dong M, Sun T, Guo J, Peng S, Jiang L, Adams DJ, Dai Q., Sci Rep. January 1, 2018; 8 (1): 1004.                

Direct neurotransmitter activation of voltage-gated potassium channels., Manville RW, Papanikolaou M, Abbott GW., Nat Commun. January 1, 2018; 9 (1): 1847.            

Ancient and modern anticonvulsants act synergistically in a KCNQ potassium channel binding pocket., Manville RW, Abbott GW., Nat Commun. January 1, 2018; 9 (1): 3845.                  

Gabapentin Is a Potent Activator of KCNQ3 and KCNQ5 Potassium Channels., Manville RW, Abbott GW., Mol Pharmacol. January 1, 2018; 94 (4): 1155-1163.

Deconstruction of an African folk medicine uncovers a novel molecular strategy for therapeutic potassium channel activation., De Silva AM, Manville RW, Abbott GW., Sci Adv. January 1, 2018; 4 (11): eaav0824.            

Insulin treatment augments KCNQ1/KCNE1 currents but not KCNQ1 currents, which is associated with an increase in KCNE1 expression., Wu M, Obara Y, Ohshima S, Nagasawa Y, Ishii K., Biochem Biophys Res Commun. November 4, 2017; 493 (1): 409-415.

Pro-arrhythmogenic Effects of the V141M KCNQ1 Mutation in Short QT Syndrome and Its Potential Therapeutic Targets: Insights from Modeling., Lee HC, Rudy Y, Liang H, Chen CC, Luo CH, Sheu SH, Cui J., J Med Biol Eng. October 1, 2017; 37 (5): 780-789.          

Molecular cloning and functional expression of the K + channel K V 7.1 and the regulatory subunit KCNE1 from equine myocardium., Pedersen PJ, Thomsen KB, Flak JB, Tejada MA, Hauser F, Trachsel D, Buhl R, Kalbfleisch T, DePriest MS, MacLeod JN, Calloe K, Klaerke DA., Res Vet Sci. August 1, 2017; 113 79-86.

Cryo-EM Structure of a KCNQ1/CaM Complex Reveals Insights into Congenital Long QT Syndrome., Sun J, MacKinnon R., Cell. June 1, 2017; 169 (6): 1042-1050.e9.

KCNE1 and KCNE3 modulate KCNQ1 channels by affecting different gating transitions., Barro-Soria R, Ramentol R, Liin SI, Perez ME, Kass RS, Larsson HP., Proc Natl Acad Sci U S A. January 1, 2017; 114 (35): E7367-E7376.

PIP2 mediates functional coupling and pharmacology of neuronal KCNQ channels., Kim RY, Pless SA, Kurata HT., Proc Natl Acad Sci U S A. January 1, 2017; 114 (45): E9702-E9711.                

Inactivation of KCNQ1 potassium channels reveals dynamic coupling between voltage sensing and pore opening., Hou P, Eldstrom J, Shi J, Zhong L, McFarland K, Gao Y, Fedida D, Cui J., Nat Commun. January 1, 2017; 8 (1): 1730.                            

Gating mechanisms underlying deactivation slowing by two KCNQ1 atrial fibrillation mutations., Peng G, Barro-Soria R, Sampson KJ, Larsson HP, Kass RS., Sci Rep. January 1, 2017; 7 45911.                

Iron Overload Leading to Torsades de Pointes in β-Thalassemia and Long QT Syndrome., Refaat MM, El Hage L, Steffensen AB, Hotait M, Schmitt N, Scheinman M, Badhwar N., Card Electrophysiol Clin. March 1, 2016; 8 (1): 247-56.

The residue I257 at S4-S5 linker in KCNQ1 determines KCNQ1/KCNE1 channel sensitivity to 1-alkanols., Xie C, Liu HW, Pan N, Ding JP, Yao J., Acta Pharmacol Sin. January 1, 2016; 37 (1): 124-33.          

Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome., Adams DS, Uzel SG, Akagi J, Wlodkowic D, Andreeva V, Yelick PC, Devitt-Lee A, Pare JF, Levin M., J Physiol. January 1, 2016; 594 (12): 3245-70.                              

Novel exon 1 protein-coding regions N-terminally extend human KCNE3 and KCNE4., Abbott GW., FASEB J. January 1, 2016; 30 (8): 2959-69.

KCNE3 acts by promoting voltage sensor activation in KCNQ1., Barro-Soria R, Perez ME, Larsson HP., Proc Natl Acad Sci U S A. December 29, 2015; 112 (52): E7286-92.

High incidence of functional ion-channel abnormalities in a consecutive Long QT cohort with novel missense genetic variants of unknown significance., Steffensen AB, Refaat MM, David JP, Mujezinovic A, Calloe K, Wojciak J, Nussbaum RL, Scheinman MM, Schmitt N., Sci Rep. September 21, 2015; 5 10009.              

An Epithelial Ca2+-Sensor Protein is an Alternative to Calmodulin to Compose Functional KCNQ1 Channels., Inanobe A, Tsuzuki C, Kurachi Y., Cell Physiol Biochem. January 1, 2015; 36 (5): 1847-61.

SPAK and OSR1 Sensitive Cell Membrane Protein Abundance and Activity of KCNQ1/E1 K+ Channels., Elvira B, Warsi J, Fezai M, Munoz C, Lang F., Cell Physiol Biochem. January 1, 2015; 37 (5): 2032-42.

Regulation of Voltage Gated K+ Channel KCNE1/KCNQ1 by the Janus Kinase JAK3., Warsi J, Abousaab A, Fezai M, Elvira B, Lang F., Cell Physiol Biochem. January 1, 2015; 37 (6): 2476-85.

Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites., Choi SH, Lee BH, Kim HJ, Jung SW, Kim HS, Shin HC, Lee JH, Kim HC, Rhim H, Hwang SH, Ha TS, Kim HJ, Cho H, Nah SY., Mol Cells. September 1, 2014; 37 (9): 656-63.                

Insulin suppresses IKs (KCNQ1/KCNE1) currents, which require β-subunit KCNE1., Wu M, Obara Y, Norota I, Nagasawa Y, Ishii K., Pflugers Arch. May 1, 2014; 466 (5): 937-46.

Domain-domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel., Zaydman MA, Kasimova MA, McFarland K, Beller Z, Hou P, Kinser HE, Liang H, Zhang G, Shi J, Tarek M, Cui J., Elife. March 18, 2014; 3 e03606.                        

KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability., Abbott GW, Tai KK, Neverisky DL, Hansler A, Hu Z, Roepke TK, Lerner DJ, Chen Q, Liu L, Zupan B, Toth M, Haynes R, Huang X, Demirbas D, Buccafusca R, Gross SS, Kanda VA, Berry GT., Sci Signal. March 4, 2014; 7 (315): ra22.

Upregulation of KCNQ1/KCNE1 K+ channels by Klotho., Almilaji A, Pakladok T, Muñoz C, Elvira B, Sopjani M, Lang F., Channels (Austin). January 1, 2014; 8 (3): 222-9.

Intracellular ATP binding is required to activate the slowly activating K+ channel I(Ks)., Li Y, Gao J, Lu Z, McFarland K, Shi J, Bock K, Cohen IS, Cui J., Proc Natl Acad Sci U S A. November 19, 2013; 110 (47): 18922-7.

Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene., Geng FS, Abbas L, Baxendale S, Holdsworth CJ, Swanson AG, Slanchev K, Hammerschmidt M, Topczewski J, Whitfield TT., Development. November 1, 2013; 140 (21): 4362-74.              

Coxsackievirus B3 modulates cardiac ion channels., Steinke K, Sachse F, Ettischer N, Strutz-Seebohm N, Henrion U, Rohrbeck M, Klosowski R, Wolters D, Brunner S, Franz WM, Pott L, Munoz C, Kandolf R, Schulze-Bahr E, Lang F, Klingel K, Seebohm G., FASEB J. October 1, 2013; 27 (10): 4108-21.

Differential effects of ginsenoside metabolites on slowly activating delayed rectifier K(+) and KCNQ1 K(+) channel currents., Choi SH, Lee BH, Kim HJ, Jung SW, Hwang SH, Nah SY., J Ginseng Res. July 1, 2013; 37 (3): 324-31.          

Dysfunctional potassium channel subunit interaction as a novel mechanism of long QT syndrome., Hoosien M, Ahearn ME, Myerburg RJ, Pham TV, Miller TE, Smets MJ, Baumbach-Reardon L, Young ML, Farooq A, Bishopric NH., Heart Rhythm. May 1, 2013; 10 (5): 728-37.

Rab GTPases are required for early orientation of the left-right axis in Xenopus., Vandenberg LN, Morrie RD, Seebohm G, Lemire JM, Levin M., Mech Dev. April 1, 2013; 130 (4-5): 254-71.                      

Purinergic signalling - a possible mechanism for KCNQ1 channel response to cell volume challenges., Hammami S, Willumsen NJ, Meinild AK, Klaerke DA, Novak I., Acta Physiol (Oxf). March 1, 2013; 207 (3): 503-15.

Downregulation of the renal outer medullary K(+) channel ROMK by the AMP-activated protein kinase., Siraskar B, Huang DY, Pakladok T, Siraskar G, Sopjani M, Alesutan I, Kucherenko Y, Almilaji A, Devanathan V, Shumilina E, Föller M, Munoz C, Lang F., Pflugers Arch. February 1, 2013; 465 (2): 233-45.

Chemical derivatization and purification of peptide-toxins for probing ion channel complexes., Hua Z, Kobertz WR., Methods Mol Biol. January 1, 2013; 995 19-30.

Impaired ion channel function related to a common KCNQ1 mutation - implications for risk stratification in long QT syndrome 1., Aidery P, Kisselbach J, Schweizer PA, Becker R, Katus HA, Thomas D., Gene. December 10, 2012; 511 (1): 26-33.        

Page(s): 1 2 3 4 Next