Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (21) GO Terms (21) Nucleotides (134) Proteins (41) Interactants (678) Wiki
XB--5922591

Papers associated with hes5.7

Search for hes5.7 morpholinos using Textpresso

Limit to papers also referencing gene:
7 paper(s) referencing morpholinos

Results 1 - 21 of 21 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis., Huang X, Zhang L, Yang S, Zhang Y, Wu M, Chen P., Genes (Basel). November 18, 2020; 11 (11):                   


Spiral waves and vertebrate embryonic handedness., Durston AJ, Peres J, Cohen MH., J Biosci. June 1, 2018; 43 (2): 375-390.


Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center., Castro Colabianchi AM, Revinski DR, Encinas PI, Baez MV, Monti RJ, Rodríguez Abinal M, Kodjabachian L, Franchini LF, López SL., Development. January 1, 2018; 145 (14):                           


Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis., Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 301-324.                          


Genome-wide identification of Wnt/β-catenin transcriptional targets during Xenopus gastrulation., Kjolby RAS, Harland RM., Dev Biol. January 1, 2017; 426 (2): 165-175.                                    


Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes., Riddiford N, Schlosser G., Dev Biol. January 1, 2017; 431 (2): 152-167.                            


Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes., Riddiford N, Schlosser G., Elife. August 31, 2016; 5                                                                         


Active repression by RARγ signaling is required for vertebrate axial elongation., Janesick A, Nguyen TT, Aisaki K, Igarashi K, Kitajima S, Chandraratna RA, Kanno J, Blumberg B., Development. June 1, 2014; 141 (11): 2260-70.                    


Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis., Curran KL, Allen L, Porter BB, Dodge J, Lope C, Willadsen G, Fisher R, Johnson N, Campbell E, VonBergen B, Winfrey D, Hadley M, Kerndt T., PLoS One. January 1, 2014; 9 (9): e108266.                            


Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells., Oropeza D, Horb M., Genesis. March 1, 2012; 50 (3): 271-85.                        


Coordinating the timing of cardiac precursor development during gastrulation: a new role for Notch signaling., Miazga CM, McLaughlin KA., Dev Biol. September 15, 2009; 333 (2): 285-96.            


Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos., Nagano T, Takehara S, Takahashi M, Aizawa S, Yamamoto A., Development. December 1, 2006; 133 (23): 4643-54.                  


The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen., Taelman V, Van Campenhout C, Sölter M, Pieler T, Bellefroid EJ., Development. August 1, 2006; 133 (15): 2961-71.                  


Identification of target genes for the Xenopus Hes-related protein XHR1, a prepattern factor specifying the midbrain-hindbrain boundary., Takada H, Hattori D, Kitayama A, Ueno N, Taira M., Dev Biol. July 1, 2005; 283 (1): 253-67.                    


Microarray-based identification of VegT targets in Xenopus., Taverner NV, Kofron M, Kofron M, Shin Y, Kabitschke C, Gilchrist MJ, Wylie C, Cho KW, Heasman J, Smith JC., Mech Dev. March 1, 2005; 122 (3): 333-54.                                          


EDEN-BP-dependent post-transcriptional regulation of gene expression in Xenopus somitic segmentation., Gautier-Courteille C, Gautier-Courteille C, Le Clainche C, Barreau C, Audic Y, Graindorge A, Maniey D, Osborne HB, Paillard L., Development. December 1, 2004; 131 (24): 6107-17.                  


Sequences downstream of the bHLH domain of the Xenopus hairy-related transcription factor-1 act as an extended dimerization domain that contributes to the selection of the partners., Taelman V, Van Wayenbergh R, Sölter M, Pichon B, Pieler T, Christophe D, Bellefroid EJ., Dev Biol. December 1, 2004; 276 (1): 47-63.                          


Regulation of segmental patterning by retinoic acid signaling during Xenopus somitogenesis., Moreno TA, Kintner C., Dev Cell. February 1, 2004; 6 (2): 205-18.


Cyclic expression of esr9 gene in Xenopus presomitic mesoderm., Li Y, Fenger U, Niehrs C, Pollet N., Differentiation. January 1, 2003; 71 (1): 83-9.          


XNAP, a conserved ankyrin repeat-containing protein with a role in the Notch pathway during Xenopus primary neurogenesis., Lahaye K, Kricha S, Bellefroid EJ., Mech Dev. January 1, 2002; 110 (1-2): 113-24.      


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V, Pollet N, Delius H, Vingron M, Pfister R, Nitsch R, Blumenstock C, Niehrs C., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            

Page(s): 1